Loading…
Computation of the high temperature Coulomb density matrix in periodic boundary conditions
The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we presen...
Saved in:
Published in: | Computer physics communications 2016-07, Vol.204 (C), p.88-96 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2016.03.011 |