Loading…

Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite

Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young’s moduli and Poisson’s ratios were determined on ~215- to 380-μm-thick machined samples by combining digital image correl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2016-11, Vol.51 (21), p.9749-9760
Main Authors: Cooper, R. C., Bruno, G., Onel, Y., Lange, A., Watkins, T. R., Shyam, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3
cites cdi_FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3
container_end_page 9760
container_issue 21
container_start_page 9749
container_title Journal of materials science
container_volume 51
creator Cooper, R. C.
Bruno, G.
Onel, Y.
Lange, A.
Watkins, T. R.
Shyam, A.
description Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young’s moduli and Poisson’s ratios were determined on ~215- to 380-μm-thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density and decrease of Young’s modulus due to machining of the thin samples extracted from diesel particulate filter honeycombs. This result is in contrast to the known effect of machining on the strength distribution of bulk, monolithic ceramics.
doi_str_mv 10.1007/s10853-016-0209-9
format article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1325446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470485280</galeid><sourcerecordid>A470485280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3</originalsourceid><addsrcrecordid>eNp1ks2KFDEQx4MoOI4-gLegFz30mu9OH5dlXRcWFD8OnkI2ne7J2p2MSRr0tq_h6_kk1tiCjigJBIrfvypV9UfoMSUnlJD2RaFES94QqhrCSNd0d9CGypY3QhN-F20IYaxhQtH76EEpN4QQ2TK6Qdcf0xLH77ffCp5Tv0xLwTb2-E0KpaT4M55tDQm7nY2jL7hfPK4Jz9btQgxxxCHifcoJhHNwObls3SffY5dyH3wO1T9E9wY7Ff_o17tFH16evz971Vy9vrg8O71qnFS0No44zTXtrJBKU-Vk35K2bz1ccW2d1H6AXw-q88SJgXHJB66ksJR1XA2t5Vv0ZM2bSg2mOCjtdi7F6F01lDMphALo2Qrtc_q8-FLNHIrz02Sjhx4M1UpIqXUrAH36F3qTlhyhBcOY7BQTnP5BjXbyJsQhVZjAIak5FS0RWjLYwBad_IOC03uYWop-CBA_Ejw_EgBT_Zc62qUUc_nu7TFLVxbGX0r2g9nnMNv81VBiDu4wqzsMuMMc3GE60LBVU4CFxebfzf1f9AMosrtM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259624314</pqid></control><display><type>article</type><title>Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Cooper, R. C. ; Bruno, G. ; Onel, Y. ; Lange, A. ; Watkins, T. R. ; Shyam, A.</creator><creatorcontrib>Cooper, R. C. ; Bruno, G. ; Onel, Y. ; Lange, A. ; Watkins, T. R. ; Shyam, A. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young’s moduli and Poisson’s ratios were determined on ~215- to 380-μm-thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density and decrease of Young’s modulus due to machining of the thin samples extracted from diesel particulate filter honeycombs. This result is in contrast to the known effect of machining on the strength distribution of bulk, monolithic ceramics.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0209-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air pollution ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computed tomography ; Cordierite ; Crystallography and Scattering Methods ; CT imaging ; Diesel ; diesel particulate filter (DPF) ; Digital imaging ; Fluid filters ; Honeycomb ; Machining ; MATERIALS SCIENCE ; microcracking ; Microcracks ; Modulus of elasticity ; Original Paper ; Poisson's ratio ; Poissons ratio ; Polymer Sciences ; Porosity ; Scanning electron microscopy ; Solid Mechanics</subject><ispartof>Journal of materials science, 2016-11, Vol.51 (21), p.9749-9760</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3</citedby><cites>FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1325446$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, R. C.</creatorcontrib><creatorcontrib>Bruno, G.</creatorcontrib><creatorcontrib>Onel, Y.</creatorcontrib><creatorcontrib>Lange, A.</creatorcontrib><creatorcontrib>Watkins, T. R.</creatorcontrib><creatorcontrib>Shyam, A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young’s moduli and Poisson’s ratios were determined on ~215- to 380-μm-thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density and decrease of Young’s modulus due to machining of the thin samples extracted from diesel particulate filter honeycombs. This result is in contrast to the known effect of machining on the strength distribution of bulk, monolithic ceramics.</description><subject>Air pollution</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computed tomography</subject><subject>Cordierite</subject><subject>Crystallography and Scattering Methods</subject><subject>CT imaging</subject><subject>Diesel</subject><subject>diesel particulate filter (DPF)</subject><subject>Digital imaging</subject><subject>Fluid filters</subject><subject>Honeycomb</subject><subject>Machining</subject><subject>MATERIALS SCIENCE</subject><subject>microcracking</subject><subject>Microcracks</subject><subject>Modulus of elasticity</subject><subject>Original Paper</subject><subject>Poisson's ratio</subject><subject>Poissons ratio</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1ks2KFDEQx4MoOI4-gLegFz30mu9OH5dlXRcWFD8OnkI2ne7J2p2MSRr0tq_h6_kk1tiCjigJBIrfvypV9UfoMSUnlJD2RaFES94QqhrCSNd0d9CGypY3QhN-F20IYaxhQtH76EEpN4QQ2TK6Qdcf0xLH77ffCp5Tv0xLwTb2-E0KpaT4M55tDQm7nY2jL7hfPK4Jz9btQgxxxCHifcoJhHNwObls3SffY5dyH3wO1T9E9wY7Ff_o17tFH16evz971Vy9vrg8O71qnFS0No44zTXtrJBKU-Vk35K2bz1ccW2d1H6AXw-q88SJgXHJB66ksJR1XA2t5Vv0ZM2bSg2mOCjtdi7F6F01lDMphALo2Qrtc_q8-FLNHIrz02Sjhx4M1UpIqXUrAH36F3qTlhyhBcOY7BQTnP5BjXbyJsQhVZjAIak5FS0RWjLYwBad_IOC03uYWop-CBA_Ejw_EgBT_Zc62qUUc_nu7TFLVxbGX0r2g9nnMNv81VBiDu4wqzsMuMMc3GE60LBVU4CFxebfzf1f9AMosrtM</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Cooper, R. C.</creator><creator>Bruno, G.</creator><creator>Onel, Y.</creator><creator>Lange, A.</creator><creator>Watkins, T. R.</creator><creator>Shyam, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161101</creationdate><title>Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite</title><author>Cooper, R. C. ; Bruno, G. ; Onel, Y. ; Lange, A. ; Watkins, T. R. ; Shyam, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air pollution</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computed tomography</topic><topic>Cordierite</topic><topic>Crystallography and Scattering Methods</topic><topic>CT imaging</topic><topic>Diesel</topic><topic>diesel particulate filter (DPF)</topic><topic>Digital imaging</topic><topic>Fluid filters</topic><topic>Honeycomb</topic><topic>Machining</topic><topic>MATERIALS SCIENCE</topic><topic>microcracking</topic><topic>Microcracks</topic><topic>Modulus of elasticity</topic><topic>Original Paper</topic><topic>Poisson's ratio</topic><topic>Poissons ratio</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, R. C.</creatorcontrib><creatorcontrib>Bruno, G.</creatorcontrib><creatorcontrib>Onel, Y.</creatorcontrib><creatorcontrib>Lange, A.</creatorcontrib><creatorcontrib>Watkins, T. R.</creatorcontrib><creatorcontrib>Shyam, A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, R. C.</au><au>Bruno, G.</au><au>Onel, Y.</au><au>Lange, A.</au><au>Watkins, T. R.</au><au>Shyam, A.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>51</volume><issue>21</issue><spage>9749</spage><epage>9760</epage><pages>9749-9760</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography, and scanning electron microscopy. Young’s moduli and Poisson’s ratios were determined on ~215- to 380-μm-thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density and decrease of Young’s modulus due to machining of the thin samples extracted from diesel particulate filter honeycombs. This result is in contrast to the known effect of machining on the strength distribution of bulk, monolithic ceramics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0209-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-11, Vol.51 (21), p.9749-9760
issn 0022-2461
1573-4803
language eng
recordid cdi_osti_scitechconnect_1325446
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Air pollution
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computed tomography
Cordierite
Crystallography and Scattering Methods
CT imaging
Diesel
diesel particulate filter (DPF)
Digital imaging
Fluid filters
Honeycomb
Machining
MATERIALS SCIENCE
microcracking
Microcracks
Modulus of elasticity
Original Paper
Poisson's ratio
Poissons ratio
Polymer Sciences
Porosity
Scanning electron microscopy
Solid Mechanics
title Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Young%E2%80%99s%20modulus%20and%20Poisson%E2%80%99s%20ratio%20changes%20due%20to%20machining%20in%20porous%20microcracked%20cordierite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cooper,%20R.%20C.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2016-11-01&rft.volume=51&rft.issue=21&rft.spage=9749&rft.epage=9760&rft.pages=9749-9760&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0209-9&rft_dat=%3Cgale_osti_%3EA470485280%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-c0c83819a456816c5d707d7ed7e4bac58ef000f69e0c4f2353f3654a12936f7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259624314&rft_id=info:pmid/&rft_galeid=A470485280&rfr_iscdi=true