Loading…
XPS and SIMS study of the surface and interface of aged C+ implanted uranium
X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C+ ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implanta...
Saved in:
Published in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2016-11, Vol.34 (6) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C+ ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C+ ions into U238 with a dose of 4.3 × 1017 cm−3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layers were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Furthermore, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface. |
---|---|
ISSN: | 0734-2101 1520-8559 |
DOI: | 10.1116/1.4962386 |