Loading…

Algorithm to solve a chance-constrained network capacity design problem with stochastic demands and finite support

We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We firs...

Full description

Saved in:
Bibliographic Details
Published in:Naval research logistics 2016-04, Vol.63 (3), p.236-246
Main Authors: Schumacher, Kathryn M., Li-Yang Chen, Richard, Cohn, Amy E.M., Castaing, Jeremy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016
ISSN:0894-069X
1520-6750
DOI:10.1002/nav.21685