Loading…

Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances

Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffrac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2016-12, Vol.49 (6), p.2244-2248
Main Authors: Zhang, Yan, Inouye, Hideyo, Crowley, Michael, Yu, Leiming, Kaeli, David, Makowski, Lee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43
cites cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43
container_end_page 2248
container_issue 6
container_start_page 2244
container_title Journal of applied crystallography
container_volume 49
creator Zhang, Yan
Inouye, Hideyo
Crowley, Michael
Yu, Leiming
Kaeli, David
Makowski, Lee
description Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement. A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.
doi_str_mv 10.1107/S1600576716013297
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1335575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4270486301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</originalsourceid><addsrcrecordid>eNqFkUFvFSEQgDfGJq3VH9DbRi9eVhlYoHs0z76qebGN1Wi8EJYdlLoPXoGNrb9etmuMqYeeBobvm8wwVXUE5AUAkS8vQBDCpZAlAqOdfFAdzKlmzj3857xfPUrpkhAQktKDqn_trI3aZBd8vdM5Y_R1cttp1LepYGuD4ziNIWFtXR_dmOopOf-tHlzK0fVTxqHWfqivJu2z-1VuO-3i7bP2BtPjas_qMeGTP_Gw-rQ--bh602zOTt-uXm0a04pWNH0LYDspbQd0gNJgz8mx7ixYjUjRdmzgAhAMaME4t4QzYeUASGjft0PLDqunS92QslPJuIzmuwneo8kKWHEkL9DzBdrFcDVhymrr0jyh9himpOBYtJwT2s31nt1BL8MUfRmhUK0gVLaSFQoWysSQUkSrdtFtdbxRQNS8GvXfaorTLc5PN-LN_YJ6t_pA1xccqChus7jle_H6r6vjDyUkk1x9fn-qpFhvxBd-rr6y32zNoF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846027473</pqid></control><display><type>article</type><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee</creator><creatorcontrib>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><description>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement. A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576716013297</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>09 BIOMASS FUELS ; algorithms ; Arrays ; biomass fuels ; Cellulose ; cellulose fibrils ; Computation ; Computer simulation ; Crystallography ; Diffraction ; diffraction pattern simulation ; Diffraction patterns ; Histograms ; Mathematical models ; pair-distance quantization ; Scattering ; X-rays</subject><ispartof>Journal of applied crystallography, 2016-12, Vol.49 (6), p.2244-2248</ispartof><rights>International Union of Crystallography, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</citedby><cites>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1335575$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Yu, Leiming</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement. A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</description><subject>09 BIOMASS FUELS</subject><subject>algorithms</subject><subject>Arrays</subject><subject>biomass fuels</subject><subject>Cellulose</subject><subject>cellulose fibrils</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>diffraction pattern simulation</subject><subject>Diffraction patterns</subject><subject>Histograms</subject><subject>Mathematical models</subject><subject>pair-distance quantization</subject><subject>Scattering</subject><subject>X-rays</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvFSEQgDfGJq3VH9DbRi9eVhlYoHs0z76qebGN1Wi8EJYdlLoPXoGNrb9etmuMqYeeBobvm8wwVXUE5AUAkS8vQBDCpZAlAqOdfFAdzKlmzj3857xfPUrpkhAQktKDqn_trI3aZBd8vdM5Y_R1cttp1LepYGuD4ziNIWFtXR_dmOopOf-tHlzK0fVTxqHWfqivJu2z-1VuO-3i7bP2BtPjas_qMeGTP_Gw-rQ--bh602zOTt-uXm0a04pWNH0LYDspbQd0gNJgz8mx7ixYjUjRdmzgAhAMaME4t4QzYeUASGjft0PLDqunS92QslPJuIzmuwneo8kKWHEkL9DzBdrFcDVhymrr0jyh9himpOBYtJwT2s31nt1BL8MUfRmhUK0gVLaSFQoWysSQUkSrdtFtdbxRQNS8GvXfaorTLc5PN-LN_YJ6t_pA1xccqChus7jle_H6r6vjDyUkk1x9fn-qpFhvxBd-rr6y32zNoF4</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Zhang, Yan</creator><creator>Inouye, Hideyo</creator><creator>Crowley, Michael</creator><creator>Yu, Leiming</creator><creator>Kaeli, David</creator><creator>Makowski, Lee</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201612</creationdate><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><author>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>09 BIOMASS FUELS</topic><topic>algorithms</topic><topic>Arrays</topic><topic>biomass fuels</topic><topic>Cellulose</topic><topic>cellulose fibrils</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>diffraction pattern simulation</topic><topic>Diffraction patterns</topic><topic>Histograms</topic><topic>Mathematical models</topic><topic>pair-distance quantization</topic><topic>Scattering</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Yu, Leiming</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Inouye, Hideyo</au><au>Crowley, Michael</au><au>Yu, Leiming</au><au>Kaeli, David</au><au>Makowski, Lee</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2016-12</date><risdate>2016</risdate><volume>49</volume><issue>6</issue><spage>2244</spage><epage>2248</epage><pages>2244-2248</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement. A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576716013297</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2016-12, Vol.49 (6), p.2244-2248
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_osti_scitechconnect_1335575
source Wiley-Blackwell Read & Publish Collection
subjects 09 BIOMASS FUELS
algorithms
Arrays
biomass fuels
Cellulose
cellulose fibrils
Computation
Computer simulation
Crystallography
Diffraction
diffraction pattern simulation
Diffraction patterns
Histograms
Mathematical models
pair-distance quantization
Scattering
X-rays
title Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20pattern%20simulation%20of%20cellulose%20fibrils%20using%20distributed%20and%20quantized%20pair%20distances&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Zhang,%20Yan&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2016-12&rft.volume=49&rft.issue=6&rft.spage=2244&rft.epage=2248&rft.pages=2244-2248&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576716013297&rft_dat=%3Cproquest_osti_%3E4270486301%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846027473&rft_id=info:pmid/&rfr_iscdi=true