Loading…
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffrac...
Saved in:
Published in: | Journal of applied crystallography 2016-12, Vol.49 (6), p.2244-2248 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43 |
container_end_page | 2248 |
container_issue | 6 |
container_start_page | 2244 |
container_title | Journal of applied crystallography |
container_volume | 49 |
creator | Zhang, Yan Inouye, Hideyo Crowley, Michael Yu, Leiming Kaeli, David Makowski, Lee |
description | Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor. |
doi_str_mv | 10.1107/S1600576716013297 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1335575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4270486301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</originalsourceid><addsrcrecordid>eNqFkUFvFSEQgDfGJq3VH9DbRi9eVhlYoHs0z76qebGN1Wi8EJYdlLoPXoGNrb9etmuMqYeeBobvm8wwVXUE5AUAkS8vQBDCpZAlAqOdfFAdzKlmzj3857xfPUrpkhAQktKDqn_trI3aZBd8vdM5Y_R1cttp1LepYGuD4ziNIWFtXR_dmOopOf-tHlzK0fVTxqHWfqivJu2z-1VuO-3i7bP2BtPjas_qMeGTP_Gw-rQ--bh602zOTt-uXm0a04pWNH0LYDspbQd0gNJgz8mx7ixYjUjRdmzgAhAMaME4t4QzYeUASGjft0PLDqunS92QslPJuIzmuwneo8kKWHEkL9DzBdrFcDVhymrr0jyh9himpOBYtJwT2s31nt1BL8MUfRmhUK0gVLaSFQoWysSQUkSrdtFtdbxRQNS8GvXfaorTLc5PN-LN_YJ6t_pA1xccqChus7jle_H6r6vjDyUkk1x9fn-qpFhvxBd-rr6y32zNoF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846027473</pqid></control><display><type>article</type><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee</creator><creatorcontrib>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><description>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576716013297</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>09 BIOMASS FUELS ; algorithms ; Arrays ; biomass fuels ; Cellulose ; cellulose fibrils ; Computation ; Computer simulation ; Crystallography ; Diffraction ; diffraction pattern simulation ; Diffraction patterns ; Histograms ; Mathematical models ; pair-distance quantization ; Scattering ; X-rays</subject><ispartof>Journal of applied crystallography, 2016-12, Vol.49 (6), p.2244-2248</ispartof><rights>International Union of Crystallography, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</citedby><cites>FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1335575$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Yu, Leiming</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</description><subject>09 BIOMASS FUELS</subject><subject>algorithms</subject><subject>Arrays</subject><subject>biomass fuels</subject><subject>Cellulose</subject><subject>cellulose fibrils</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>diffraction pattern simulation</subject><subject>Diffraction patterns</subject><subject>Histograms</subject><subject>Mathematical models</subject><subject>pair-distance quantization</subject><subject>Scattering</subject><subject>X-rays</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvFSEQgDfGJq3VH9DbRi9eVhlYoHs0z76qebGN1Wi8EJYdlLoPXoGNrb9etmuMqYeeBobvm8wwVXUE5AUAkS8vQBDCpZAlAqOdfFAdzKlmzj3857xfPUrpkhAQktKDqn_trI3aZBd8vdM5Y_R1cttp1LepYGuD4ziNIWFtXR_dmOopOf-tHlzK0fVTxqHWfqivJu2z-1VuO-3i7bP2BtPjas_qMeGTP_Gw-rQ--bh602zOTt-uXm0a04pWNH0LYDspbQd0gNJgz8mx7ixYjUjRdmzgAhAMaME4t4QzYeUASGjft0PLDqunS92QslPJuIzmuwneo8kKWHEkL9DzBdrFcDVhymrr0jyh9himpOBYtJwT2s31nt1BL8MUfRmhUK0gVLaSFQoWysSQUkSrdtFtdbxRQNS8GvXfaorTLc5PN-LN_YJ6t_pA1xccqChus7jle_H6r6vjDyUkk1x9fn-qpFhvxBd-rr6y32zNoF4</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Zhang, Yan</creator><creator>Inouye, Hideyo</creator><creator>Crowley, Michael</creator><creator>Yu, Leiming</creator><creator>Kaeli, David</creator><creator>Makowski, Lee</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201612</creationdate><title>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</title><author>Zhang, Yan ; Inouye, Hideyo ; Crowley, Michael ; Yu, Leiming ; Kaeli, David ; Makowski, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>09 BIOMASS FUELS</topic><topic>algorithms</topic><topic>Arrays</topic><topic>biomass fuels</topic><topic>Cellulose</topic><topic>cellulose fibrils</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>diffraction pattern simulation</topic><topic>Diffraction patterns</topic><topic>Histograms</topic><topic>Mathematical models</topic><topic>pair-distance quantization</topic><topic>Scattering</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Inouye, Hideyo</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Yu, Leiming</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Inouye, Hideyo</au><au>Crowley, Michael</au><au>Yu, Leiming</au><au>Kaeli, David</au><au>Makowski, Lee</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2016-12</date><risdate>2016</risdate><volume>49</volume><issue>6</issue><spage>2244</spage><epage>2248</epage><pages>2244-2248</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Intensity simulation of X‐ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X‐ray diffraction patterns from complex fibrils using atom‐type‐specific pair‐distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair‐distance data set. These quantized pair‐distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
A diffraction pattern simulation of cellulose fibrils is presented, using a modification of the Debye formula in cylindrical coordinates. Pair distances are labelled by atom type and quantized using a two‐dimensional histogram, which greatly decreases the computation time and maintains a smaller R factor.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576716013297</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2016-12, Vol.49 (6), p.2244-2248 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_osti_scitechconnect_1335575 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 09 BIOMASS FUELS algorithms Arrays biomass fuels Cellulose cellulose fibrils Computation Computer simulation Crystallography Diffraction diffraction pattern simulation Diffraction patterns Histograms Mathematical models pair-distance quantization Scattering X-rays |
title | Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20pattern%20simulation%20of%20cellulose%20fibrils%20using%20distributed%20and%20quantized%20pair%20distances&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Zhang,%20Yan&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2016-12&rft.volume=49&rft.issue=6&rft.spage=2244&rft.epage=2248&rft.pages=2244-2248&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576716013297&rft_dat=%3Cproquest_osti_%3E4270486301%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4646-b411f977f912d1001b508a9f1faee2ef93d561e1c1a6355f0536f7d1e02bb4d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846027473&rft_id=info:pmid/&rfr_iscdi=true |