Loading…
Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics
In this paper we study a (1+1)-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical p...
Saved in:
Published in: | Physical review. D 2016-08, Vol.94 (4), Article 045003 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we study a (1+1)-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, mu , is zero, we describe the formation of fermion three-quark (nucleons and Delta baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at mu =0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phases with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons). |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.94.045003 |