Loading…
Instrumentation for localized superconducting cavity diagnostics
Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance li...
Saved in:
Published in: | Superconductor science & technology 2017-03, Vol.30 (3), p.34002 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3 |
container_end_page | |
container_issue | 3 |
container_start_page | 34002 |
container_title | Superconductor science & technology |
container_volume | 30 |
creator | Conway, Z A Ge, M Iwashita, Y |
description | Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera. |
doi_str_mv | 10.1088/1361-6668/30/3/034002 |
format | article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1339006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustaa4c12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKF48lI76bRJe1MWv2DBi55DmqZrlt2kJKmw_npbKuJBPA0MzzsfDyGXFG4oVFVGkdGUMVZlCBlmgAVAfkQWP_1jsoC6xDSHojolZyFsASitMF-Q22cboh_22kYZjbNJ53yyc0ruzKdukzD02itn20FFYzeJkh8mHpLWyI11IRoVzslJJ3dBX3zXJXl7uH9dPaXrl8fn1d06VViWMeUNR8h5o-tGypoibXRBkUvGO0Z5wctC0oLKVjIlueraFqXiUMuya1RZMY1LcjXPndaKoEzU6n28zGoVBUWsAdgIlTOkvAvB60703uylPwgKYnIlJidiciIQBIrZ1Zi7nnPG9WLrBm_HV0QYQvyNib7tRpT-gf4__gvUdXng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Instrumentation for localized superconducting cavity diagnostics</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Conway, Z A ; Ge, M ; Iwashita, Y</creator><creatorcontrib>Conway, Z A ; Ge, M ; Iwashita, Y</creatorcontrib><description>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/30/3/034002</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>United Kingdom: IOP Publishing</publisher><subject>diagnostics ; imaging ; instrumentation ; second sound ; superconducting cavities ; temperature mapping</subject><ispartof>Superconductor science & technology, 2017-03, Vol.30 (3), p.34002</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</citedby><cites>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1339006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Conway, Z A</creatorcontrib><creatorcontrib>Ge, M</creatorcontrib><creatorcontrib>Iwashita, Y</creatorcontrib><title>Instrumentation for localized superconducting cavity diagnostics</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</description><subject>diagnostics</subject><subject>imaging</subject><subject>instrumentation</subject><subject>second sound</subject><subject>superconducting cavities</subject><subject>temperature mapping</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKF48lI76bRJe1MWv2DBi55DmqZrlt2kJKmw_npbKuJBPA0MzzsfDyGXFG4oVFVGkdGUMVZlCBlmgAVAfkQWP_1jsoC6xDSHojolZyFsASitMF-Q22cboh_22kYZjbNJ53yyc0ruzKdukzD02itn20FFYzeJkh8mHpLWyI11IRoVzslJJ3dBX3zXJXl7uH9dPaXrl8fn1d06VViWMeUNR8h5o-tGypoibXRBkUvGO0Z5wctC0oLKVjIlueraFqXiUMuya1RZMY1LcjXPndaKoEzU6n28zGoVBUWsAdgIlTOkvAvB60703uylPwgKYnIlJidiciIQBIrZ1Zi7nnPG9WLrBm_HV0QYQvyNib7tRpT-gf4__gvUdXng</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Conway, Z A</creator><creator>Ge, M</creator><creator>Iwashita, Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170301</creationdate><title>Instrumentation for localized superconducting cavity diagnostics</title><author>Conway, Z A ; Ge, M ; Iwashita, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>diagnostics</topic><topic>imaging</topic><topic>instrumentation</topic><topic>second sound</topic><topic>superconducting cavities</topic><topic>temperature mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conway, Z A</creatorcontrib><creatorcontrib>Ge, M</creatorcontrib><creatorcontrib>Iwashita, Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conway, Z A</au><au>Ge, M</au><au>Iwashita, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumentation for localized superconducting cavity diagnostics</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>30</volume><issue>3</issue><spage>34002</spage><pages>34002-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</abstract><cop>United Kingdom</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6668/30/3/034002</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2017-03, Vol.30 (3), p.34002 |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_osti_scitechconnect_1339006 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | diagnostics imaging instrumentation second sound superconducting cavities temperature mapping |
title | Instrumentation for localized superconducting cavity diagnostics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumentation%20for%20localized%20superconducting%20cavity%20diagnostics&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Conway,%20Z%20A&rft.date=2017-03-01&rft.volume=30&rft.issue=3&rft.spage=34002&rft.pages=34002-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/30/3/034002&rft_dat=%3Ciop_osti_%3Esustaa4c12%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |