Loading…

Instrumentation for localized superconducting cavity diagnostics

Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance li...

Full description

Saved in:
Bibliographic Details
Published in:Superconductor science & technology 2017-03, Vol.30 (3), p.34002
Main Authors: Conway, Z A, Ge, M, Iwashita, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3
cites cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3
container_end_page
container_issue 3
container_start_page 34002
container_title Superconductor science & technology
container_volume 30
creator Conway, Z A
Ge, M
Iwashita, Y
description Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.
doi_str_mv 10.1088/1361-6668/30/3/034002
format article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1339006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustaa4c12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKF48lI76bRJe1MWv2DBi55DmqZrlt2kJKmw_npbKuJBPA0MzzsfDyGXFG4oVFVGkdGUMVZlCBlmgAVAfkQWP_1jsoC6xDSHojolZyFsASitMF-Q22cboh_22kYZjbNJ53yyc0ruzKdukzD02itn20FFYzeJkh8mHpLWyI11IRoVzslJJ3dBX3zXJXl7uH9dPaXrl8fn1d06VViWMeUNR8h5o-tGypoibXRBkUvGO0Z5wctC0oLKVjIlueraFqXiUMuya1RZMY1LcjXPndaKoEzU6n28zGoVBUWsAdgIlTOkvAvB60703uylPwgKYnIlJidiciIQBIrZ1Zi7nnPG9WLrBm_HV0QYQvyNib7tRpT-gf4__gvUdXng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Instrumentation for localized superconducting cavity diagnostics</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Conway, Z A ; Ge, M ; Iwashita, Y</creator><creatorcontrib>Conway, Z A ; Ge, M ; Iwashita, Y</creatorcontrib><description>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/30/3/034002</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>United Kingdom: IOP Publishing</publisher><subject>diagnostics ; imaging ; instrumentation ; second sound ; superconducting cavities ; temperature mapping</subject><ispartof>Superconductor science &amp; technology, 2017-03, Vol.30 (3), p.34002</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</citedby><cites>FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1339006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Conway, Z A</creatorcontrib><creatorcontrib>Ge, M</creatorcontrib><creatorcontrib>Iwashita, Y</creatorcontrib><title>Instrumentation for localized superconducting cavity diagnostics</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</description><subject>diagnostics</subject><subject>imaging</subject><subject>instrumentation</subject><subject>second sound</subject><subject>superconducting cavities</subject><subject>temperature mapping</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKF48lI76bRJe1MWv2DBi55DmqZrlt2kJKmw_npbKuJBPA0MzzsfDyGXFG4oVFVGkdGUMVZlCBlmgAVAfkQWP_1jsoC6xDSHojolZyFsASitMF-Q22cboh_22kYZjbNJ53yyc0ruzKdukzD02itn20FFYzeJkh8mHpLWyI11IRoVzslJJ3dBX3zXJXl7uH9dPaXrl8fn1d06VViWMeUNR8h5o-tGypoibXRBkUvGO0Z5wctC0oLKVjIlueraFqXiUMuya1RZMY1LcjXPndaKoEzU6n28zGoVBUWsAdgIlTOkvAvB60703uylPwgKYnIlJidiciIQBIrZ1Zi7nnPG9WLrBm_HV0QYQvyNib7tRpT-gf4__gvUdXng</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Conway, Z A</creator><creator>Ge, M</creator><creator>Iwashita, Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170301</creationdate><title>Instrumentation for localized superconducting cavity diagnostics</title><author>Conway, Z A ; Ge, M ; Iwashita, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>diagnostics</topic><topic>imaging</topic><topic>instrumentation</topic><topic>second sound</topic><topic>superconducting cavities</topic><topic>temperature mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conway, Z A</creatorcontrib><creatorcontrib>Ge, M</creatorcontrib><creatorcontrib>Iwashita, Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conway, Z A</au><au>Ge, M</au><au>Iwashita, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumentation for localized superconducting cavity diagnostics</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>30</volume><issue>3</issue><spage>34002</spage><pages>34002-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.</abstract><cop>United Kingdom</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6668/30/3/034002</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2017-03, Vol.30 (3), p.34002
issn 0953-2048
1361-6668
language eng
recordid cdi_osti_scitechconnect_1339006
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects diagnostics
imaging
instrumentation
second sound
superconducting cavities
temperature mapping
title Instrumentation for localized superconducting cavity diagnostics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumentation%20for%20localized%20superconducting%20cavity%20diagnostics&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Conway,%20Z%20A&rft.date=2017-03-01&rft.volume=30&rft.issue=3&rft.spage=34002&rft.pages=34002-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/30/3/034002&rft_dat=%3Ciop_osti_%3Esustaa4c12%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-7b73027be9baa9131be4137a67f6174754a141ada6ca7cfdd3ac709a5fbc586e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true