Loading…
Mechanism of Me–Re Bond Addition to Platinum(II) and Dioxygen Activation by the Resulting Pt–Re Bimetallic Center
Unusual cis-oxidative addition of methyltrioxorhenium (MTO) to [PtMe2(bpy)], (bpy = 2,2′-bipyridine) (1) is described. Addition of MTO to 1 first gives the Lewis acid–base adduct [(bpy)Me2Pt–Re(Me)(O)3] (2) and subsequently affords the oxidative addition product [(bpy)Me3PtReO3] (3). All complex...
Saved in:
Published in: | Inorganic chemistry 2017-02, Vol.56 (4), p.2145-2152 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unusual cis-oxidative addition of methyltrioxorhenium (MTO) to [PtMe2(bpy)], (bpy = 2,2′-bipyridine) (1) is described. Addition of MTO to 1 first gives the Lewis acid–base adduct [(bpy)Me2Pt–Re(Me)(O)3] (2) and subsequently affords the oxidative addition product [(bpy)Me3PtReO3] (3). All complexes 1, MTO, 2, and 3 are in equilibrium in solution. The structure of 2 was confirmed by X-ray crystallography, and its dissociation constant in solution is 0.87 M. The structure of 3 was confirmed by extended X-ray absorption fine structure and X-ray absorption near-edge structure in tandem with one- and two-dimensional NMR spectroscopy augmented by deuterium and 13C isotope-labeling studies. Kinetics of formation of compound 3 revealed saturation kinetics dependence on [MTO] and first-order in [Pt], complying with prior equilibrium formation of 2 with oxidative addition of Me–Re being the rate-determining step. Exposure of 3 to molecular oxygen or air resulted in the insertion of an oxygen atom into the platinum–rhenium bond forming [(bpy)Me3PtOReO3] (4) as final product. Density functional theory analysis on oxygen insertion pathways leading to complex 4, merited on the basis of Russell oxidation pathway, revealed the involvement of rhenium peroxo species. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.6b02801 |