Loading…
Differential formulation of the gyrokinetic Landau operator
Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a...
Saved in:
Published in: | Journal of plasma physics 2017-02, Vol.83 (1), Article 595830102 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of plasma physics |
container_volume | 83 |
creator | Hirvijoki, Eero Brizard, Alain J. Pfefferlé, David |
description | Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent. |
doi_str_mv | 10.1017/S0022377816001203 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1351535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377816001203</cupid><sourcerecordid>4311601181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgimAPPebEdiwmVv1IkBmC2HMdpXdq42M7Qb0-qdkBCTG-4353uHSGXFG4oUHH7DlAUKERFOQAtAI_IhJZc5qICcUwmOznf6afkLMYlACAUYkLuHlzX2WD75PQq63xYDyudnO8z32VpYbP5Nvgv19vkTFbrvtVD5jc26OTDOTnp9Crai8Odks-nx4_ZS16_Pb_O7uvclAxTbhrWoOUGQRRCsoZLXXILkmNbFlRXTSsrgxZZU3DJtJRAEThvKUpdjS_glFztc31MTkXjkjUL4_vemqQoMsqQjdD1HtoE_z3YmNTSD6EfeylacWRMVsBHiu4pE3yMwXZqE9xah62ioHZDqj9Djh48ePS6Ca6d21_R_7p-AGz7cmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863559806</pqid></control><display><type>article</type><title>Differential formulation of the gyrokinetic Landau operator</title><source>Cambridge Journals Online</source><creator>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David</creator><creatorcontrib>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) ; Saint Michael's College, Colchester, VT (United States)</creatorcontrib><description>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377816001203</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Differential equations ; fusion plasma ; Partial differential equations ; plasma nonlinear phenomena ; Plasma physics ; plasma simulation ; Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</subject><ispartof>Journal of plasma physics, 2017-02, Vol.83 (1), Article 595830102</ispartof><rights>Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</citedby><cites>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</cites><orcidid>0000000210716614 ; 0000000199156707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377816001203/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1351535$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirvijoki, Eero</creatorcontrib><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Saint Michael's College, Colchester, VT (United States)</creatorcontrib><title>Differential formulation of the gyrokinetic Landau operator</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Differential equations</subject><subject>fusion plasma</subject><subject>Partial differential equations</subject><subject>plasma nonlinear phenomena</subject><subject>Plasma physics</subject><subject>plasma simulation</subject><subject>Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAUxC0EEqXwAdgimAPPebEdiwmVv1IkBmC2HMdpXdq42M7Qb0-qdkBCTG-4353uHSGXFG4oUHH7DlAUKERFOQAtAI_IhJZc5qICcUwmOznf6afkLMYlACAUYkLuHlzX2WD75PQq63xYDyudnO8z32VpYbP5Nvgv19vkTFbrvtVD5jc26OTDOTnp9Crai8Odks-nx4_ZS16_Pb_O7uvclAxTbhrWoOUGQRRCsoZLXXILkmNbFlRXTSsrgxZZU3DJtJRAEThvKUpdjS_glFztc31MTkXjkjUL4_vemqQoMsqQjdD1HtoE_z3YmNTSD6EfeylacWRMVsBHiu4pE3yMwXZqE9xah62ioHZDqj9Djh48ePS6Ca6d21_R_7p-AGz7cmQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hirvijoki, Eero</creator><creator>Brizard, Alain J.</creator><creator>Pfefferlé, David</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000210716614</orcidid><orcidid>https://orcid.org/0000000199156707</orcidid></search><sort><creationdate>20170201</creationdate><title>Differential formulation of the gyrokinetic Landau operator</title><author>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Differential equations</topic><topic>fusion plasma</topic><topic>Partial differential equations</topic><topic>plasma nonlinear phenomena</topic><topic>Plasma physics</topic><topic>plasma simulation</topic><topic>Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirvijoki, Eero</creatorcontrib><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Saint Michael's College, Colchester, VT (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirvijoki, Eero</au><au>Brizard, Alain J.</au><au>Pfefferlé, David</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Saint Michael's College, Colchester, VT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential formulation of the gyrokinetic Landau operator</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>83</volume><issue>1</issue><artnum>595830102</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377816001203</doi><tpages>12</tpages><orcidid>https://orcid.org/0000000210716614</orcidid><orcidid>https://orcid.org/0000000199156707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 2017-02, Vol.83 (1), Article 595830102 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_osti_scitechconnect_1351535 |
source | Cambridge Journals Online |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Differential equations fusion plasma Partial differential equations plasma nonlinear phenomena Plasma physics plasma simulation Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium |
title | Differential formulation of the gyrokinetic Landau operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20formulation%20of%20the%20gyrokinetic%20Landau%20operator&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Hirvijoki,%20Eero&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2017-02-01&rft.volume=83&rft.issue=1&rft.artnum=595830102&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377816001203&rft_dat=%3Cproquest_osti_%3E4311601181%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1863559806&rft_id=info:pmid/&rft_cupid=10_1017_S0022377816001203&rfr_iscdi=true |