Loading…

Differential formulation of the gyrokinetic Landau operator

Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plasma physics 2017-02, Vol.83 (1), Article 595830102
Main Authors: Hirvijoki, Eero, Brizard, Alain J., Pfefferlé, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693
cites cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693
container_end_page
container_issue 1
container_start_page
container_title Journal of plasma physics
container_volume 83
creator Hirvijoki, Eero
Brizard, Alain J.
Pfefferlé, David
description Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.
doi_str_mv 10.1017/S0022377816001203
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1351535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377816001203</cupid><sourcerecordid>4311601181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgimAPPebEdiwmVv1IkBmC2HMdpXdq42M7Qb0-qdkBCTG-4353uHSGXFG4oUHH7DlAUKERFOQAtAI_IhJZc5qICcUwmOznf6afkLMYlACAUYkLuHlzX2WD75PQq63xYDyudnO8z32VpYbP5Nvgv19vkTFbrvtVD5jc26OTDOTnp9Crai8Odks-nx4_ZS16_Pb_O7uvclAxTbhrWoOUGQRRCsoZLXXILkmNbFlRXTSsrgxZZU3DJtJRAEThvKUpdjS_glFztc31MTkXjkjUL4_vemqQoMsqQjdD1HtoE_z3YmNTSD6EfeylacWRMVsBHiu4pE3yMwXZqE9xah62ioHZDqj9Djh48ePS6Ca6d21_R_7p-AGz7cmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863559806</pqid></control><display><type>article</type><title>Differential formulation of the gyrokinetic Landau operator</title><source>Cambridge Journals Online</source><creator>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David</creator><creatorcontrib>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) ; Saint Michael's College, Colchester, VT (United States)</creatorcontrib><description>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377816001203</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Differential equations ; fusion plasma ; Partial differential equations ; plasma nonlinear phenomena ; Plasma physics ; plasma simulation ; Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</subject><ispartof>Journal of plasma physics, 2017-02, Vol.83 (1), Article 595830102</ispartof><rights>Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</citedby><cites>FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</cites><orcidid>0000000210716614 ; 0000000199156707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377816001203/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1351535$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirvijoki, Eero</creatorcontrib><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Saint Michael's College, Colchester, VT (United States)</creatorcontrib><title>Differential formulation of the gyrokinetic Landau operator</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Differential equations</subject><subject>fusion plasma</subject><subject>Partial differential equations</subject><subject>plasma nonlinear phenomena</subject><subject>Plasma physics</subject><subject>plasma simulation</subject><subject>Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAUxC0EEqXwAdgimAPPebEdiwmVv1IkBmC2HMdpXdq42M7Qb0-qdkBCTG-4353uHSGXFG4oUHH7DlAUKERFOQAtAI_IhJZc5qICcUwmOznf6afkLMYlACAUYkLuHlzX2WD75PQq63xYDyudnO8z32VpYbP5Nvgv19vkTFbrvtVD5jc26OTDOTnp9Crai8Odks-nx4_ZS16_Pb_O7uvclAxTbhrWoOUGQRRCsoZLXXILkmNbFlRXTSsrgxZZU3DJtJRAEThvKUpdjS_glFztc31MTkXjkjUL4_vemqQoMsqQjdD1HtoE_z3YmNTSD6EfeylacWRMVsBHiu4pE3yMwXZqE9xah62ioHZDqj9Djh48ePS6Ca6d21_R_7p-AGz7cmQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hirvijoki, Eero</creator><creator>Brizard, Alain J.</creator><creator>Pfefferlé, David</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000210716614</orcidid><orcidid>https://orcid.org/0000000199156707</orcidid></search><sort><creationdate>20170201</creationdate><title>Differential formulation of the gyrokinetic Landau operator</title><author>Hirvijoki, Eero ; Brizard, Alain J. ; Pfefferlé, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Differential equations</topic><topic>fusion plasma</topic><topic>Partial differential equations</topic><topic>plasma nonlinear phenomena</topic><topic>Plasma physics</topic><topic>plasma simulation</topic><topic>Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirvijoki, Eero</creatorcontrib><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Saint Michael's College, Colchester, VT (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirvijoki, Eero</au><au>Brizard, Alain J.</au><au>Pfefferlé, David</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Saint Michael's College, Colchester, VT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential formulation of the gyrokinetic Landau operator</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>83</volume><issue>1</issue><artnum>595830102</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377816001203</doi><tpages>12</tpages><orcidid>https://orcid.org/0000000210716614</orcidid><orcidid>https://orcid.org/0000000199156707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2017-02, Vol.83 (1), Article 595830102
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_1351535
source Cambridge Journals Online
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Differential equations
fusion plasma
Partial differential equations
plasma nonlinear phenomena
Plasma physics
plasma simulation
Solved and Unsolved Problems in Plasma Physics: Nathaniel J. Fisch Symposium
title Differential formulation of the gyrokinetic Landau operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20formulation%20of%20the%20gyrokinetic%20Landau%20operator&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Hirvijoki,%20Eero&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2017-02-01&rft.volume=83&rft.issue=1&rft.artnum=595830102&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377816001203&rft_dat=%3Cproquest_osti_%3E4311601181%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-cb5b3e6c3072795b69a46e0963d421a8bd98c3e35b2695a99013066d139a84693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1863559806&rft_id=info:pmid/&rft_cupid=10_1017_S0022377816001203&rfr_iscdi=true