Loading…
Laser Initiation of Fe(II) Complexes of 4‑Nitro-pyrazolyl Substituted Tetrazine Ligands
The synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substit...
Saved in:
Published in: | Inorganic chemistry 2017-02, Vol.56 (4), p.2297-2303 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIR light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. Specifically, the complexes required lower densities (0.9 g/cm3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm3). |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.6b02998 |