Loading…
Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale
This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s disc...
Saved in:
Published in: | ACS nano 2016-04, Vol.10 (4), p.4312-4321 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4321 |
container_issue | 4 |
container_start_page | 4312 |
container_title | ACS nano |
container_volume | 10 |
creator | Verde, Michael G Baggetto, Loïc Balke, Nina Veith, Gabriel M Seo, Joon Kyo Wang, Ziying Meng, Ying Shirley |
description | This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form. |
doi_str_mv | 10.1021/acsnano.5b07875 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1352742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1784744981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3</originalsourceid><addsrcrecordid>eNo9kU1PwzAMhiMEYjA4c0MVJyTUkY-maY9oGh_SYByGxC1K0pRmapPRpAf-PYEWTrbsx9ZrvwBcILhAEKNbobwV1i2ohKxg9ACcoJLkKSzy98P_nKIZOPV-ByGNUH4MZjgvWUFLdgKeV-2gTCWCsR9JaHTy2givk20vrK9d38WGs4mrk7XJtoZuEI5ZaMxYF-F35iVK8Eq0-gwc1aL1-nyKc_B2v9ouH9P15uFpebdOBSlQSPNK1lmuGKwrAqNsIZCktGCywpBmJNcS6TpHBGqMaFkqIhWWlEXxFRU1k2QOrsa9zgfDvTJBq0Y5a7UKHBGKWYYjdD1C-959DtoH3hmvdNsKq93gOWJFxrKsLFBELyd0kJ2u-L43nei_-N-fInAzAvHhfOeG3sbzOIL8xwU-ucAnF8g3gRl3-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784744981</pqid></control><display><type>article</type><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley</creator><creatorcontrib>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b07875</identifier><identifier>PMID: 26978597</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anode ; c-AFM ; Li-ion battery ; Li4Ti5O12 ; LTO ; MATERIALS SCIENCE ; thin-film ; XPS</subject><ispartof>ACS nano, 2016-04, Vol.10 (4), p.4312-4321</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26978597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1352742$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verde, Michael G</creatorcontrib><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Seo, Joon Kyo</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</description><subject>anode</subject><subject>c-AFM</subject><subject>Li-ion battery</subject><subject>Li4Ti5O12</subject><subject>LTO</subject><subject>MATERIALS SCIENCE</subject><subject>thin-film</subject><subject>XPS</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwzAMhiMEYjA4c0MVJyTUkY-maY9oGh_SYByGxC1K0pRmapPRpAf-PYEWTrbsx9ZrvwBcILhAEKNbobwV1i2ohKxg9ACcoJLkKSzy98P_nKIZOPV-ByGNUH4MZjgvWUFLdgKeV-2gTCWCsR9JaHTy2givk20vrK9d38WGs4mrk7XJtoZuEI5ZaMxYF-F35iVK8Eq0-gwc1aL1-nyKc_B2v9ouH9P15uFpebdOBSlQSPNK1lmuGKwrAqNsIZCktGCywpBmJNcS6TpHBGqMaFkqIhWWlEXxFRU1k2QOrsa9zgfDvTJBq0Y5a7UKHBGKWYYjdD1C-959DtoH3hmvdNsKq93gOWJFxrKsLFBELyd0kJ2u-L43nei_-N-fInAzAvHhfOeG3sbzOIL8xwU-ucAnF8g3gRl3-A</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Verde, Michael G</creator><creator>Baggetto, Loïc</creator><creator>Balke, Nina</creator><creator>Veith, Gabriel M</creator><creator>Seo, Joon Kyo</creator><creator>Wang, Ziying</creator><creator>Meng, Ying Shirley</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160426</creationdate><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><author>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anode</topic><topic>c-AFM</topic><topic>Li-ion battery</topic><topic>Li4Ti5O12</topic><topic>LTO</topic><topic>MATERIALS SCIENCE</topic><topic>thin-film</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verde, Michael G</creatorcontrib><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Seo, Joon Kyo</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verde, Michael G</au><au>Baggetto, Loïc</au><au>Balke, Nina</au><au>Veith, Gabriel M</au><au>Seo, Joon Kyo</au><au>Wang, Ziying</au><au>Meng, Ying Shirley</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>4312</spage><epage>4321</epage><pages>4312-4321</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26978597</pmid><doi>10.1021/acsnano.5b07875</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2016-04, Vol.10 (4), p.4312-4321 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1352742 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | anode c-AFM Li-ion battery Li4Ti5O12 LTO MATERIALS SCIENCE thin-film XPS |
title | Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Phase%20Transformation%20of%20Li4Ti5O12%20Lithiation%20at%20the%20Nanoscale&rft.jtitle=ACS%20nano&rft.au=Verde,%20Michael%20G&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-04-26&rft.volume=10&rft.issue=4&rft.spage=4312&rft.epage=4321&rft.pages=4312-4321&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b07875&rft_dat=%3Cproquest_osti_%3E1784744981%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784744981&rft_id=info:pmid/26978597&rfr_iscdi=true |