Loading…

Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale

This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s disc...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2016-04, Vol.10 (4), p.4312-4321
Main Authors: Verde, Michael G, Baggetto, Loïc, Balke, Nina, Veith, Gabriel M, Seo, Joon Kyo, Wang, Ziying, Meng, Ying Shirley
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4321
container_issue 4
container_start_page 4312
container_title ACS nano
container_volume 10
creator Verde, Michael G
Baggetto, Loïc
Balke, Nina
Veith, Gabriel M
Seo, Joon Kyo
Wang, Ziying
Meng, Ying Shirley
description This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.
doi_str_mv 10.1021/acsnano.5b07875
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1352742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1784744981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3</originalsourceid><addsrcrecordid>eNo9kU1PwzAMhiMEYjA4c0MVJyTUkY-maY9oGh_SYByGxC1K0pRmapPRpAf-PYEWTrbsx9ZrvwBcILhAEKNbobwV1i2ohKxg9ACcoJLkKSzy98P_nKIZOPV-ByGNUH4MZjgvWUFLdgKeV-2gTCWCsR9JaHTy2givk20vrK9d38WGs4mrk7XJtoZuEI5ZaMxYF-F35iVK8Eq0-gwc1aL1-nyKc_B2v9ouH9P15uFpebdOBSlQSPNK1lmuGKwrAqNsIZCktGCywpBmJNcS6TpHBGqMaFkqIhWWlEXxFRU1k2QOrsa9zgfDvTJBq0Y5a7UKHBGKWYYjdD1C-959DtoH3hmvdNsKq93gOWJFxrKsLFBELyd0kJ2u-L43nei_-N-fInAzAvHhfOeG3sbzOIL8xwU-ucAnF8g3gRl3-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784744981</pqid></control><display><type>article</type><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley</creator><creatorcontrib>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b07875</identifier><identifier>PMID: 26978597</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anode ; c-AFM ; Li-ion battery ; Li4Ti5O12 ; LTO ; MATERIALS SCIENCE ; thin-film ; XPS</subject><ispartof>ACS nano, 2016-04, Vol.10 (4), p.4312-4321</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26978597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1352742$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verde, Michael G</creatorcontrib><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Seo, Joon Kyo</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</description><subject>anode</subject><subject>c-AFM</subject><subject>Li-ion battery</subject><subject>Li4Ti5O12</subject><subject>LTO</subject><subject>MATERIALS SCIENCE</subject><subject>thin-film</subject><subject>XPS</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwzAMhiMEYjA4c0MVJyTUkY-maY9oGh_SYByGxC1K0pRmapPRpAf-PYEWTrbsx9ZrvwBcILhAEKNbobwV1i2ohKxg9ACcoJLkKSzy98P_nKIZOPV-ByGNUH4MZjgvWUFLdgKeV-2gTCWCsR9JaHTy2givk20vrK9d38WGs4mrk7XJtoZuEI5ZaMxYF-F35iVK8Eq0-gwc1aL1-nyKc_B2v9ouH9P15uFpebdOBSlQSPNK1lmuGKwrAqNsIZCktGCywpBmJNcS6TpHBGqMaFkqIhWWlEXxFRU1k2QOrsa9zgfDvTJBq0Y5a7UKHBGKWYYjdD1C-959DtoH3hmvdNsKq93gOWJFxrKsLFBELyd0kJ2u-L43nei_-N-fInAzAvHhfOeG3sbzOIL8xwU-ucAnF8g3gRl3-A</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Verde, Michael G</creator><creator>Baggetto, Loïc</creator><creator>Balke, Nina</creator><creator>Veith, Gabriel M</creator><creator>Seo, Joon Kyo</creator><creator>Wang, Ziying</creator><creator>Meng, Ying Shirley</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160426</creationdate><title>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</title><author>Verde, Michael G ; Baggetto, Loïc ; Balke, Nina ; Veith, Gabriel M ; Seo, Joon Kyo ; Wang, Ziying ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anode</topic><topic>c-AFM</topic><topic>Li-ion battery</topic><topic>Li4Ti5O12</topic><topic>LTO</topic><topic>MATERIALS SCIENCE</topic><topic>thin-film</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verde, Michael G</creatorcontrib><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Seo, Joon Kyo</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verde, Michael G</au><au>Baggetto, Loïc</au><au>Balke, Nina</au><au>Veith, Gabriel M</au><au>Seo, Joon Kyo</au><au>Wang, Ziying</au><au>Meng, Ying Shirley</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>4312</spage><epage>4321</epage><pages>4312-4321</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26978597</pmid><doi>10.1021/acsnano.5b07875</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-04, Vol.10 (4), p.4312-4321
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1352742
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects anode
c-AFM
Li-ion battery
Li4Ti5O12
LTO
MATERIALS SCIENCE
thin-film
XPS
title Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Phase%20Transformation%20of%20Li4Ti5O12%20Lithiation%20at%20the%20Nanoscale&rft.jtitle=ACS%20nano&rft.au=Verde,%20Michael%20G&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-04-26&rft.volume=10&rft.issue=4&rft.spage=4312&rft.epage=4321&rft.pages=4312-4321&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b07875&rft_dat=%3Cproquest_osti_%3E1784744981%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-6dbf46c70fd30875aa1b5587bd205436eb1ef6130e21599c3bc2b57787d5af7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784744981&rft_id=info:pmid/26978597&rfr_iscdi=true