Loading…
Ion Diffusion Within Water Films in Unsaturated Porous Media
Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted...
Saved in:
Published in: | Environmental science & technology 2017-04, Vol.51 (8), p.4338-4346 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3 |
container_end_page | 4346 |
container_issue | 8 |
container_start_page | 4338 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Tokunaga, Tetsu K Finsterle, Stefan Kim, Yongman Wan, Jiamin Lanzirotti, Antonio Newville, Matthew |
description | Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films. |
doi_str_mv | 10.1021/acs.est.6b05891 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1355036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882083579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp69iZFL4J0d5LZtAl4Eb9hRQ-K3kKaphjphybtwX9vll0VBE-ThOedyTyE7FOYUmB0pk2Y2tBPswK4kHSDjClnkHLB6SYZA1BMJWYvI7ITwhsAMASxTUZMIAfJ8zE5ve3a5MJV1RBcPD27_tXFonvrkytXNyGJ16c26H7w8bFMHjrfDSG5s6XTu2Sr0nWwe-s6IU9Xl4_nN-ni_vr2_GyRao6sT3MjGM4RmJGcMkoxA8y5KJFBUchCI-V5YStbSiNLKUumDWNoDRc2Q24LnJDDVd8u9E4F43prXk3Xttb0iiLngFmEjlfQu-8-hihFNS4YW9e6tfHHigrBIO6dy4ge_UHfusG3cQVFJQDOOY3mJmS2oozvQvC2Uu_eNdp_KgpqaV9F-2qZXtuPiYN136FobPnDf-uOwMkKWCZ_Z_7T7gvorIzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900345101</pqid></control><display><type>article</type><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew</creator><creatorcontrib>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b05891</identifier><identifier>PMID: 28350957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Desaturation ; Diffusion ; Film thickness ; Geologic formations ; Grain ; Impedance ; Ion diffusion ; Ions ; Porosity ; Porous materials ; Porous media ; Quartz ; Rubidium ; Saturation ; Silicon Dioxide ; Solute transport ; Synchrotron radiation ; Synchrotrons ; Thinning ; Tortuosity ; Unsaturated soils ; Water ; Water film ; Water Movements</subject><ispartof>Environmental science & technology, 2017-04, Vol.51 (8), p.4338-4346</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</citedby><cites>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</cites><orcidid>0000-0003-0861-6128 ; 0000000308616128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1355036$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokunaga, Tetsu K</creatorcontrib><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Kim, Yongman</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Lanzirotti, Antonio</creatorcontrib><creatorcontrib>Newville, Matthew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</description><subject>Desaturation</subject><subject>Diffusion</subject><subject>Film thickness</subject><subject>Geologic formations</subject><subject>Grain</subject><subject>Impedance</subject><subject>Ion diffusion</subject><subject>Ions</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Quartz</subject><subject>Rubidium</subject><subject>Saturation</subject><subject>Silicon Dioxide</subject><subject>Solute transport</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Thinning</subject><subject>Tortuosity</subject><subject>Unsaturated soils</subject><subject>Water</subject><subject>Water film</subject><subject>Water Movements</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rp69iZFL4J0d5LZtAl4Eb9hRQ-K3kKaphjphybtwX9vll0VBE-ThOedyTyE7FOYUmB0pk2Y2tBPswK4kHSDjClnkHLB6SYZA1BMJWYvI7ITwhsAMASxTUZMIAfJ8zE5ve3a5MJV1RBcPD27_tXFonvrkytXNyGJ16c26H7w8bFMHjrfDSG5s6XTu2Sr0nWwe-s6IU9Xl4_nN-ni_vr2_GyRao6sT3MjGM4RmJGcMkoxA8y5KJFBUchCI-V5YStbSiNLKUumDWNoDRc2Q24LnJDDVd8u9E4F43prXk3Xttb0iiLngFmEjlfQu-8-hihFNS4YW9e6tfHHigrBIO6dy4ge_UHfusG3cQVFJQDOOY3mJmS2oozvQvC2Uu_eNdp_KgpqaV9F-2qZXtuPiYN136FobPnDf-uOwMkKWCZ_Z_7T7gvorIzs</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Tokunaga, Tetsu K</creator><creator>Finsterle, Stefan</creator><creator>Kim, Yongman</creator><creator>Wan, Jiamin</creator><creator>Lanzirotti, Antonio</creator><creator>Newville, Matthew</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid></search><sort><creationdate>20170418</creationdate><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><author>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Desaturation</topic><topic>Diffusion</topic><topic>Film thickness</topic><topic>Geologic formations</topic><topic>Grain</topic><topic>Impedance</topic><topic>Ion diffusion</topic><topic>Ions</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Quartz</topic><topic>Rubidium</topic><topic>Saturation</topic><topic>Silicon Dioxide</topic><topic>Solute transport</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Thinning</topic><topic>Tortuosity</topic><topic>Unsaturated soils</topic><topic>Water</topic><topic>Water film</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokunaga, Tetsu K</creatorcontrib><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Kim, Yongman</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Lanzirotti, Antonio</creatorcontrib><creatorcontrib>Newville, Matthew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokunaga, Tetsu K</au><au>Finsterle, Stefan</au><au>Kim, Yongman</au><au>Wan, Jiamin</au><au>Lanzirotti, Antonio</au><au>Newville, Matthew</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Diffusion Within Water Films in Unsaturated Porous Media</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>51</volume><issue>8</issue><spage>4338</spage><epage>4346</epage><pages>4338-4346</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28350957</pmid><doi>10.1021/acs.est.6b05891</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-04, Vol.51 (8), p.4338-4346 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1355036 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Desaturation Diffusion Film thickness Geologic formations Grain Impedance Ion diffusion Ions Porosity Porous materials Porous media Quartz Rubidium Saturation Silicon Dioxide Solute transport Synchrotron radiation Synchrotrons Thinning Tortuosity Unsaturated soils Water Water film Water Movements |
title | Ion Diffusion Within Water Films in Unsaturated Porous Media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Diffusion%20Within%20Water%20Films%20in%20Unsaturated%20Porous%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tokunaga,%20Tetsu%20K&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-04-18&rft.volume=51&rft.issue=8&rft.spage=4338&rft.epage=4346&rft.pages=4338-4346&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.6b05891&rft_dat=%3Cproquest_osti_%3E1882083579%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1900345101&rft_id=info:pmid/28350957&rfr_iscdi=true |