Loading…

Ion Diffusion Within Water Films in Unsaturated Porous Media

Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2017-04, Vol.51 (8), p.4338-4346
Main Authors: Tokunaga, Tetsu K, Finsterle, Stefan, Kim, Yongman, Wan, Jiamin, Lanzirotti, Antonio, Newville, Matthew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3
cites cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3
container_end_page 4346
container_issue 8
container_start_page 4338
container_title Environmental science & technology
container_volume 51
creator Tokunaga, Tetsu K
Finsterle, Stefan
Kim, Yongman
Wan, Jiamin
Lanzirotti, Antonio
Newville, Matthew
description Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.
doi_str_mv 10.1021/acs.est.6b05891
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1355036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882083579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp69iZFL4J0d5LZtAl4Eb9hRQ-K3kKaphjphybtwX9vll0VBE-ThOedyTyE7FOYUmB0pk2Y2tBPswK4kHSDjClnkHLB6SYZA1BMJWYvI7ITwhsAMASxTUZMIAfJ8zE5ve3a5MJV1RBcPD27_tXFonvrkytXNyGJ16c26H7w8bFMHjrfDSG5s6XTu2Sr0nWwe-s6IU9Xl4_nN-ni_vr2_GyRao6sT3MjGM4RmJGcMkoxA8y5KJFBUchCI-V5YStbSiNLKUumDWNoDRc2Q24LnJDDVd8u9E4F43prXk3Xttb0iiLngFmEjlfQu-8-hihFNS4YW9e6tfHHigrBIO6dy4ge_UHfusG3cQVFJQDOOY3mJmS2oozvQvC2Uu_eNdp_KgpqaV9F-2qZXtuPiYN136FobPnDf-uOwMkKWCZ_Z_7T7gvorIzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900345101</pqid></control><display><type>article</type><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew</creator><creatorcontrib>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b05891</identifier><identifier>PMID: 28350957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Desaturation ; Diffusion ; Film thickness ; Geologic formations ; Grain ; Impedance ; Ion diffusion ; Ions ; Porosity ; Porous materials ; Porous media ; Quartz ; Rubidium ; Saturation ; Silicon Dioxide ; Solute transport ; Synchrotron radiation ; Synchrotrons ; Thinning ; Tortuosity ; Unsaturated soils ; Water ; Water film ; Water Movements</subject><ispartof>Environmental science &amp; technology, 2017-04, Vol.51 (8), p.4338-4346</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</citedby><cites>FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</cites><orcidid>0000-0003-0861-6128 ; 0000000308616128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1355036$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokunaga, Tetsu K</creatorcontrib><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Kim, Yongman</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Lanzirotti, Antonio</creatorcontrib><creatorcontrib>Newville, Matthew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</description><subject>Desaturation</subject><subject>Diffusion</subject><subject>Film thickness</subject><subject>Geologic formations</subject><subject>Grain</subject><subject>Impedance</subject><subject>Ion diffusion</subject><subject>Ions</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Quartz</subject><subject>Rubidium</subject><subject>Saturation</subject><subject>Silicon Dioxide</subject><subject>Solute transport</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Thinning</subject><subject>Tortuosity</subject><subject>Unsaturated soils</subject><subject>Water</subject><subject>Water film</subject><subject>Water Movements</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rp69iZFL4J0d5LZtAl4Eb9hRQ-K3kKaphjphybtwX9vll0VBE-ThOedyTyE7FOYUmB0pk2Y2tBPswK4kHSDjClnkHLB6SYZA1BMJWYvI7ITwhsAMASxTUZMIAfJ8zE5ve3a5MJV1RBcPD27_tXFonvrkytXNyGJ16c26H7w8bFMHjrfDSG5s6XTu2Sr0nWwe-s6IU9Xl4_nN-ni_vr2_GyRao6sT3MjGM4RmJGcMkoxA8y5KJFBUchCI-V5YStbSiNLKUumDWNoDRc2Q24LnJDDVd8u9E4F43prXk3Xttb0iiLngFmEjlfQu-8-hihFNS4YW9e6tfHHigrBIO6dy4ge_UHfusG3cQVFJQDOOY3mJmS2oozvQvC2Uu_eNdp_KgpqaV9F-2qZXtuPiYN136FobPnDf-uOwMkKWCZ_Z_7T7gvorIzs</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Tokunaga, Tetsu K</creator><creator>Finsterle, Stefan</creator><creator>Kim, Yongman</creator><creator>Wan, Jiamin</creator><creator>Lanzirotti, Antonio</creator><creator>Newville, Matthew</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid></search><sort><creationdate>20170418</creationdate><title>Ion Diffusion Within Water Films in Unsaturated Porous Media</title><author>Tokunaga, Tetsu K ; Finsterle, Stefan ; Kim, Yongman ; Wan, Jiamin ; Lanzirotti, Antonio ; Newville, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Desaturation</topic><topic>Diffusion</topic><topic>Film thickness</topic><topic>Geologic formations</topic><topic>Grain</topic><topic>Impedance</topic><topic>Ion diffusion</topic><topic>Ions</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Quartz</topic><topic>Rubidium</topic><topic>Saturation</topic><topic>Silicon Dioxide</topic><topic>Solute transport</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Thinning</topic><topic>Tortuosity</topic><topic>Unsaturated soils</topic><topic>Water</topic><topic>Water film</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokunaga, Tetsu K</creatorcontrib><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Kim, Yongman</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Lanzirotti, Antonio</creatorcontrib><creatorcontrib>Newville, Matthew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokunaga, Tetsu K</au><au>Finsterle, Stefan</au><au>Kim, Yongman</au><au>Wan, Jiamin</au><au>Lanzirotti, Antonio</au><au>Newville, Matthew</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Diffusion Within Water Films in Unsaturated Porous Media</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>51</volume><issue>8</issue><spage>4338</spage><epage>4346</epage><pages>4338-4346</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br– in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10–15 m2 s–1 at θ = 1.0 × 10–4 m3 m–3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o) of Rb+ and Br– in bulk water (30 °C) are both ∼2.4 × 10–9 m2 s–1, we found the impedance factor f = D e/(θD o) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28350957</pmid><doi>10.1021/acs.est.6b05891</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0861-6128</orcidid><orcidid>https://orcid.org/0000000308616128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-04, Vol.51 (8), p.4338-4346
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1355036
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Desaturation
Diffusion
Film thickness
Geologic formations
Grain
Impedance
Ion diffusion
Ions
Porosity
Porous materials
Porous media
Quartz
Rubidium
Saturation
Silicon Dioxide
Solute transport
Synchrotron radiation
Synchrotrons
Thinning
Tortuosity
Unsaturated soils
Water
Water film
Water Movements
title Ion Diffusion Within Water Films in Unsaturated Porous Media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Diffusion%20Within%20Water%20Films%20in%20Unsaturated%20Porous%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tokunaga,%20Tetsu%20K&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-04-18&rft.volume=51&rft.issue=8&rft.spage=4338&rft.epage=4346&rft.pages=4338-4346&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.6b05891&rft_dat=%3Cproquest_osti_%3E1882083579%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a532t-7c8234302c9512113603758d320bb9ba3157befed9c9d99d2ac223ec58e635eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1900345101&rft_id=info:pmid/28350957&rfr_iscdi=true