Loading…

A supramolecular microenvironment strategy for transition metal catalysis

A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecul...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2015-12, Vol.350 (6265), p.1235-1238
Main Authors: Kaphan, David M., Levin, Mark D., Bergman, Robert G., Raymond, Kenneth N., Toste, F. Dean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecular assembly acts as a functional enzyme mimic, applying the concepts of enzymatic catalysis to a reactivity manifold not represented in biology. Kinetic experiments delineate a Michaelis-Menten-type mechanism, with measured rate accelerations (Kcat/Kuncat)up to 1.9 × 10⁷ (here Kcat and Kuncat are the Michaelis-Menten enzymatic rate constant and observed uncatalyzed rate constant, respectively). This modality has further been incorporated into a dual catalytic cross-coupling reaction, which requires both the supramolecular microenvironment catalyst and the transition metal catalyst operating in concert to achieve efficient turnover.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aad3087