Loading…

Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites

Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not co...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2017-07, Vol.133 (C), p.303-315
Main Authors: Nizolek, T.J., Begley, M.R., McCabe, R.J., Avallone, J.T., Mara, N.A., Beyerlein, I.J., Pollock, T.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not consider the often rapid and unstable process of kink band propagation. Here we take advantage of stable kink band formation in Cu-Nb nanolaminates to quantitatively map the local strain fields surrounding a propagating kink band during uniaxial compression. Kink bands are observed to initiate at specimen edges, propagate across the sample during a rising global stress, and induce extended strain fields in the non-kinked material surrounding the propagating kink band. It is proposed that these stress/strain fields significantly contribute to the total energy dissipated during kinking and, analogous to crack tip stress/strain fields, influence the direction of kink propagation and therefore the kink band inclination angle. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2017.04.050