Loading…
Oxygen-Free Atomic Layer Deposition of Indium Sulfide
Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, wher...
Saved in:
Published in: | ACS applied materials & interfaces 2014-08, Vol.6 (15), p.12137-12145 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043 |
---|---|
cites | cdi_FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043 |
container_end_page | 12145 |
container_issue | 15 |
container_start_page | 12137 |
container_title | ACS applied materials & interfaces |
container_volume | 6 |
creator | McCarthy, Robert F Weimer, Matthew S Emery, Jonathan D Hock, Adam S Martinson, Alex B. F |
description | Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching |
doi_str_mv | 10.1021/am501331w |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1357041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553316887</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043</originalsourceid><addsrcrecordid>eNpt0M1LwzAYx_EgipvTg_-AFEHQQzWvfTmO6XQw2EE9hzR9ohltM5MWt__eSudOnpLDh98DX4QuCb4nmJIHVQtMGCPfR2hMcs7jjAp6fPhzPkJnIawxThjF4hSNqMAJyYkYI7Ha7j6gieceIJq2rrY6Wqod-OgRNi7Y1romciZaNKXt6ui1q4wt4RydGFUFuNi_E_Q-f3qbvcTL1fNiNl3GiqVpG4OiJktokRnW31asyHJIeQ6JSIRWqQGdKeBM6IQDlLQsoCBlYYAWWJUGczZB18OuC62VQdsW9Kd2TQO6lYSJFHPSo9sBbbz76iC0srZBQ1WpBlwXJBGib5NkWdrTu4Fq70LwYOTG21r5nSRY_qaUh5S9vdrPdkUN5UH-tevBzQCUDnLtOt_0Kf4Z-gG5zXlp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553316887</pqid></control><display><type>article</type><title>Oxygen-Free Atomic Layer Deposition of Indium Sulfide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>McCarthy, Robert F ; Weimer, Matthew S ; Emery, Jonathan D ; Hock, Adam S ; Martinson, Alex B. F</creator><creatorcontrib>McCarthy, Robert F ; Weimer, Matthew S ; Emery, Jonathan D ; Hock, Adam S ; Martinson, Alex B. F ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching <1 Ω·cm for films deposited at 225 °C. Hall measurements reveal n-type conductivity due to free electron concentrations up to 1018 cm–3 and mobilities of order 1 cm2/(V·s). The digital synthesis of In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am501331w</identifier><identifier>PMID: 25061915</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atomic layer deposition ; in situ measurements ; indium sulfide ; indium(III) amidinate ; photovoltaics ; surface reactions</subject><ispartof>ACS applied materials & interfaces, 2014-08, Vol.6 (15), p.12137-12145</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043</citedby><cites>FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25061915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1357041$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Robert F</creatorcontrib><creatorcontrib>Weimer, Matthew S</creatorcontrib><creatorcontrib>Emery, Jonathan D</creatorcontrib><creatorcontrib>Hock, Adam S</creatorcontrib><creatorcontrib>Martinson, Alex B. F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Oxygen-Free Atomic Layer Deposition of Indium Sulfide</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching <1 Ω·cm for films deposited at 225 °C. Hall measurements reveal n-type conductivity due to free electron concentrations up to 1018 cm–3 and mobilities of order 1 cm2/(V·s). The digital synthesis of In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.</description><subject>Atomic layer deposition</subject><subject>in situ measurements</subject><subject>indium sulfide</subject><subject>indium(III) amidinate</subject><subject>photovoltaics</subject><subject>surface reactions</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0M1LwzAYx_EgipvTg_-AFEHQQzWvfTmO6XQw2EE9hzR9ohltM5MWt__eSudOnpLDh98DX4QuCb4nmJIHVQtMGCPfR2hMcs7jjAp6fPhzPkJnIawxThjF4hSNqMAJyYkYI7Ha7j6gieceIJq2rrY6Wqod-OgRNi7Y1romciZaNKXt6ui1q4wt4RydGFUFuNi_E_Q-f3qbvcTL1fNiNl3GiqVpG4OiJktokRnW31asyHJIeQ6JSIRWqQGdKeBM6IQDlLQsoCBlYYAWWJUGczZB18OuC62VQdsW9Kd2TQO6lYSJFHPSo9sBbbz76iC0srZBQ1WpBlwXJBGib5NkWdrTu4Fq70LwYOTG21r5nSRY_qaUh5S9vdrPdkUN5UH-tevBzQCUDnLtOt_0Kf4Z-gG5zXlp</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>McCarthy, Robert F</creator><creator>Weimer, Matthew S</creator><creator>Emery, Jonathan D</creator><creator>Hock, Adam S</creator><creator>Martinson, Alex B. F</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140813</creationdate><title>Oxygen-Free Atomic Layer Deposition of Indium Sulfide</title><author>McCarthy, Robert F ; Weimer, Matthew S ; Emery, Jonathan D ; Hock, Adam S ; Martinson, Alex B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic layer deposition</topic><topic>in situ measurements</topic><topic>indium sulfide</topic><topic>indium(III) amidinate</topic><topic>photovoltaics</topic><topic>surface reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Robert F</creatorcontrib><creatorcontrib>Weimer, Matthew S</creatorcontrib><creatorcontrib>Emery, Jonathan D</creatorcontrib><creatorcontrib>Hock, Adam S</creatorcontrib><creatorcontrib>Martinson, Alex B. F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Robert F</au><au>Weimer, Matthew S</au><au>Emery, Jonathan D</au><au>Hock, Adam S</au><au>Martinson, Alex B. F</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen-Free Atomic Layer Deposition of Indium Sulfide</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>6</volume><issue>15</issue><spage>12137</spage><epage>12145</epage><pages>12137-12145</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching <1 Ω·cm for films deposited at 225 °C. Hall measurements reveal n-type conductivity due to free electron concentrations up to 1018 cm–3 and mobilities of order 1 cm2/(V·s). The digital synthesis of In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25061915</pmid><doi>10.1021/am501331w</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2014-08, Vol.6 (15), p.12137-12145 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1357041 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Atomic layer deposition in situ measurements indium sulfide indium(III) amidinate photovoltaics surface reactions |
title | Oxygen-Free Atomic Layer Deposition of Indium Sulfide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T19%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen-Free%20Atomic%20Layer%20Deposition%20of%20Indium%20Sulfide&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=McCarthy,%20Robert%20F&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2014-08-13&rft.volume=6&rft.issue=15&rft.spage=12137&rft.epage=12145&rft.pages=12137-12145&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am501331w&rft_dat=%3Cproquest_osti_%3E1553316887%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a377t-ea2f862b8f3006a3b89e749e6565ca7fec8ae435c64eed2dbeb1dbfe2b0adf043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553316887&rft_id=info:pmid/25061915&rfr_iscdi=true |