Loading…
Mechanical Removal and Rescreening of Local Screening Charges at Ferroelectric Surfaces
In this paper, we report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing th...
Saved in:
Published in: | Physical review applied 2015-01, Vol.3 (1), Article 014003 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing the pressure leads to further removal of charge until a threshold is reached when all screening charges are removed. We fit all rescreening EFM contrast curves under various pressures into a universal exponential decay. Finally, the findings imply that we can control the screening degree of ferroelectric surfaces by mechanical means without affecting the polarization underneath. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevApplied.3.014003 |