Loading…
Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels
The microstructure and mechanical properties in unaged and thermally aged (at 280 oC, 320 oC, 360 oC, and 400 oC to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M23C6 carbides located at the δ–ferrite/γ– austenite heterophase interface...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-04, Vol.690 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The microstructure and mechanical properties in unaged and thermally aged (at 280 oC, 320 oC, 360 oC, and 400 oC to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M23C6 carbides located at the δ–ferrite/γ– austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as a function of aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 oC and 400 oC and in CF–8 at 400 oC. The microstructural evolution is correlated to changes in mechanical properties. |
---|---|
ISSN: | 0921-5093 1873-4936 |