Loading…

On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment

•Novel analysis of 10 years of leaf level data at the Duke FACE site.•Leaf-level flux variability depends on meteorological and internal ecosystem variability.•Meteorological variability highly impacts fine temporal scales.•Spatial ecosystem variability impacts coarser scales.•Upscaling of leaf leve...

Full description

Saved in:
Bibliographic Details
Published in:Agricultural and forest meteorology 2017-01, Vol.232 (C), p.367-383
Main Authors: Paschalis, Athanasios, Katul, Gabriel G., Fatichi, Simone, Palmroth, Sari, Way, Danielle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3
cites cdi_FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3
container_end_page 383
container_issue C
container_start_page 367
container_title Agricultural and forest meteorology
container_volume 232
creator Paschalis, Athanasios
Katul, Gabriel G.
Fatichi, Simone
Palmroth, Sari
Way, Danielle
description •Novel analysis of 10 years of leaf level data at the Duke FACE site.•Leaf-level flux variability depends on meteorological and internal ecosystem variability.•Meteorological variability highly impacts fine temporal scales.•Spatial ecosystem variability impacts coarser scales.•Upscaling of leaf level fluxes to the ecosystem scale is non-trivial. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.
doi_str_mv 10.1016/j.agrformet.2016.09.003
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1358739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192316303823</els_id><sourcerecordid>1850778569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIoUqJP0G0r0lIuUpR6ReDTcOAkQwJfkTPCxqulKokLSRv0T_eZSdpBrTovdnRnM7hDyg0HOgN3d7nL523fODxjzIg1y4DlA-YUsWNuUWVFUcEEWadFmjBflN3IZwg6AFU3DF-TfZqRxi_QgvZXK9jYeqetOI9QuHEPEgXoMkxsD0ugo9niQEQ2VcXBh2qK3mq42BZXauxBomGS0sqdyNDRxJ-dTE7TsMSTKSfjX_g_StUuqka6Xq3uKf6ckM-AYr8nXTvYBv7_XK_K6vn9ZPWbPm4en1fI50xWHmEnVYQ3K8Fp20LK2QiU5A9WAVroua9Zix9EopdNelaZTKFteGVDAoAJTXpGfZ10XohVB24h6q904oo6ClXX6HE-gmzNo8u5tn9yKwQaNfS9HdPsgWFtD07T13QxtztDTEzx2YkoHSX8UDMQck9iJj5jEHJMALlJMibk8MzGde7DoZzc4ajTWz2aMs59q_Ado_aNF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850778569</pqid></control><display><type>article</type><title>On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Paschalis, Athanasios ; Katul, Gabriel G. ; Fatichi, Simone ; Palmroth, Sari ; Way, Danielle</creator><creatorcontrib>Paschalis, Athanasios ; Katul, Gabriel G. ; Fatichi, Simone ; Palmroth, Sari ; Way, Danielle</creatorcontrib><description>•Novel analysis of 10 years of leaf level data at the Duke FACE site.•Leaf-level flux variability depends on meteorological and internal ecosystem variability.•Meteorological variability highly impacts fine temporal scales.•Spatial ecosystem variability impacts coarser scales.•Upscaling of leaf level fluxes to the ecosystem scale is non-trivial. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2016.09.003</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ecohydrological modeling ; Elevated CO2 ; FACE ; Spatio-temporal variability ; Stomatal conductance model</subject><ispartof>Agricultural and forest meteorology, 2017-01, Vol.232 (C), p.367-383</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3</citedby><cites>FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3</cites><orcidid>0000-0003-4833-9962 ; 0000000348339962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1358739$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paschalis, Athanasios</creatorcontrib><creatorcontrib>Katul, Gabriel G.</creatorcontrib><creatorcontrib>Fatichi, Simone</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Way, Danielle</creatorcontrib><title>On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment</title><title>Agricultural and forest meteorology</title><description>•Novel analysis of 10 years of leaf level data at the Duke FACE site.•Leaf-level flux variability depends on meteorological and internal ecosystem variability.•Meteorological variability highly impacts fine temporal scales.•Spatial ecosystem variability impacts coarser scales.•Upscaling of leaf level fluxes to the ecosystem scale is non-trivial. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.</description><subject>Ecohydrological modeling</subject><subject>Elevated CO2</subject><subject>FACE</subject><subject>Spatio-temporal variability</subject><subject>Stomatal conductance model</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUctu2zAQJIoUqJP0G0r0lIuUpR6ReDTcOAkQwJfkTPCxqulKokLSRv0T_eZSdpBrTovdnRnM7hDyg0HOgN3d7nL523fODxjzIg1y4DlA-YUsWNuUWVFUcEEWadFmjBflN3IZwg6AFU3DF-TfZqRxi_QgvZXK9jYeqetOI9QuHEPEgXoMkxsD0ugo9niQEQ2VcXBh2qK3mq42BZXauxBomGS0sqdyNDRxJ-dTE7TsMSTKSfjX_g_StUuqka6Xq3uKf6ckM-AYr8nXTvYBv7_XK_K6vn9ZPWbPm4en1fI50xWHmEnVYQ3K8Fp20LK2QiU5A9WAVroua9Zix9EopdNelaZTKFteGVDAoAJTXpGfZ10XohVB24h6q904oo6ClXX6HE-gmzNo8u5tn9yKwQaNfS9HdPsgWFtD07T13QxtztDTEzx2YkoHSX8UDMQck9iJj5jEHJMALlJMibk8MzGde7DoZzc4ajTWz2aMs59q_Ado_aNF</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Paschalis, Athanasios</creator><creator>Katul, Gabriel G.</creator><creator>Fatichi, Simone</creator><creator>Palmroth, Sari</creator><creator>Way, Danielle</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4833-9962</orcidid><orcidid>https://orcid.org/0000000348339962</orcidid></search><sort><creationdate>20170101</creationdate><title>On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment</title><author>Paschalis, Athanasios ; Katul, Gabriel G. ; Fatichi, Simone ; Palmroth, Sari ; Way, Danielle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ecohydrological modeling</topic><topic>Elevated CO2</topic><topic>FACE</topic><topic>Spatio-temporal variability</topic><topic>Stomatal conductance model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paschalis, Athanasios</creatorcontrib><creatorcontrib>Katul, Gabriel G.</creatorcontrib><creatorcontrib>Fatichi, Simone</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Way, Danielle</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paschalis, Athanasios</au><au>Katul, Gabriel G.</au><au>Fatichi, Simone</au><au>Palmroth, Sari</au><au>Way, Danielle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>232</volume><issue>C</issue><spage>367</spage><epage>383</epage><pages>367-383</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><abstract>•Novel analysis of 10 years of leaf level data at the Duke FACE site.•Leaf-level flux variability depends on meteorological and internal ecosystem variability.•Meteorological variability highly impacts fine temporal scales.•Spatial ecosystem variability impacts coarser scales.•Upscaling of leaf level fluxes to the ecosystem scale is non-trivial. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2016.09.003</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4833-9962</orcidid><orcidid>https://orcid.org/0000000348339962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2017-01, Vol.232 (C), p.367-383
issn 0168-1923
1873-2240
language eng
recordid cdi_osti_scitechconnect_1358739
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Ecohydrological modeling
Elevated CO2
FACE
Spatio-temporal variability
Stomatal conductance model
title On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20variability%20of%20the%20ecosystem%20response%20to%20elevated%20atmospheric%20CO2%20across%20spatial%20and%20temporal%20scales%20at%20the%20Duke%20Forest%20FACE%20experiment&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Paschalis,%20Athanasios&rft.date=2017-01-01&rft.volume=232&rft.issue=C&rft.spage=367&rft.epage=383&rft.pages=367-383&rft.issn=0168-1923&rft.eissn=1873-2240&rft_id=info:doi/10.1016/j.agrformet.2016.09.003&rft_dat=%3Cproquest_osti_%3E1850778569%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-abfe50bd95af08184eba910b70cbc53518ef9edbbcaf0b3dfbea894d0b01040d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850778569&rft_id=info:pmid/&rfr_iscdi=true