Loading…
Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2
Defects formed during chemical vapor deposition (CVD) of two‐dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed...
Saved in:
Published in: | Advanced functional materials 2017-05, Vol.27 (19), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 19 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Li, Xufan Puretzky, Alexander A. Sang, Xiahan KC, Santosh Tian, Mengkun Ceballos, Frank Mahjouri‐Samani, Masoud Wang, Kai Unocic, Raymond R. Zhao, Hui Duscher, Gerd Cooper, Valentino R. Rouleau, Christopher M. Geohegan, David B. Xiao, Kai |
description | Defects formed during chemical vapor deposition (CVD) of two‐dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed to enable next generation optoelectronic devices. In this work, isoelectronic doping is presented as a new strategy to form stable alloys and suppress defects and enhance photoluminescence (PL) in CVD‐grown TMD monolayers. The isoelectronic substitution of W atoms for Mo atoms in CVD‐grown monolayers of Mo1–
x
W
x
Se2 (0 < x < 0.18) is shown to effectively suppress Se vacancy concentration by 50% compared to those found in pristine MoSe2 monolayers, resulting in a decrease in defect‐mediated nonradiative recombination, ≈10 times more intense PL, and an increase in the carrier lifetime by a factor of 3. Theoretical predictions reveal that isoelectronic W alloying to form Mo1–
x
W
x
Se2 monolayers raises the energy of deep level defects in MoSe2 to enable faster quenching, which is confirmed by low temperature (4–125 K) PL from defect‐related localized states. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.
Isoelectronic tungsten alloying in MoSe2 monolayers, forming Mo1–
x
W
x
Se2, suppresses both the formation of Se vacancies in the lattice and the deep levels in the electronic bandgap. As a result, the photoluminescence is greatly enhanced by up to 10 times. |
doi_str_mv | 10.1002/adfm.201603850 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1360047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920415717</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3000-d4aa99f50ee4fcea113de977d8a8168da0cd8dff9cd7ab1592ccdbf604add7b13</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxYMoWKtXz4ueU2fynWNprRZaPLQFb8tmd7ampLsxmyj9702o9DRveD8ej-d5jwgTBAhehNLHSQCYQJjFcOWNMMHEDyHIri8aP2-9O-cOAJimYTTy5Kar64acK61hVrM5aZKtY8KoXlPNVvRDlWM7V5o9WzpLVe831pSSbTuzdy0ZtukK15Zt1w4hpWFra2wlTtT0akPBvXejReXo4f-Ovd3idTt791cfb8vZdOXbEAB8FQmR5zoGokhLEoihojxNVSYyTDIlQKpMaZ1LlYoC4zyQUhU6gUgolRYYjr2nc67t23Any5bkl7TG9I05hglAlPbQ8xmqG_vdkWv5wXaN6XtxzAOIME5xoPIz9VtWdOJ1Ux5Fc-IIfJiaD1Pzy9R8Ol-sL1_4B347doA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920415717</pqid></control><display><type>article</type><title>Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2</title><source>Wiley</source><creator>Li, Xufan ; Puretzky, Alexander A. ; Sang, Xiahan ; KC, Santosh ; Tian, Mengkun ; Ceballos, Frank ; Mahjouri‐Samani, Masoud ; Wang, Kai ; Unocic, Raymond R. ; Zhao, Hui ; Duscher, Gerd ; Cooper, Valentino R. ; Rouleau, Christopher M. ; Geohegan, David B. ; Xiao, Kai</creator><creatorcontrib>Li, Xufan ; Puretzky, Alexander A. ; Sang, Xiahan ; KC, Santosh ; Tian, Mengkun ; Ceballos, Frank ; Mahjouri‐Samani, Masoud ; Wang, Kai ; Unocic, Raymond R. ; Zhao, Hui ; Duscher, Gerd ; Cooper, Valentino R. ; Rouleau, Christopher M. ; Geohegan, David B. ; Xiao, Kai ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Defects formed during chemical vapor deposition (CVD) of two‐dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed to enable next generation optoelectronic devices. In this work, isoelectronic doping is presented as a new strategy to form stable alloys and suppress defects and enhance photoluminescence (PL) in CVD‐grown TMD monolayers. The isoelectronic substitution of W atoms for Mo atoms in CVD‐grown monolayers of Mo1–
x
W
x
Se2 (0 < x < 0.18) is shown to effectively suppress Se vacancy concentration by 50% compared to those found in pristine MoSe2 monolayers, resulting in a decrease in defect‐mediated nonradiative recombination, ≈10 times more intense PL, and an increase in the carrier lifetime by a factor of 3. Theoretical predictions reveal that isoelectronic W alloying to form Mo1–
x
W
x
Se2 monolayers raises the energy of deep level defects in MoSe2 to enable faster quenching, which is confirmed by low temperature (4–125 K) PL from defect‐related localized states. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.
Isoelectronic tungsten alloying in MoSe2 monolayers, forming Mo1–
x
W
x
Se2, suppresses both the formation of Se vacancies in the lattice and the deep levels in the electronic bandgap. As a result, the photoluminescence is greatly enhanced by up to 10 times.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201603850</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier lifetime ; Chemical vapor deposition ; Defects ; Doping ; Electronic devices ; Heterogeneity ; isoelectronic ; MATERIALS SCIENCE ; Mo1–xWxSe2 ; Monolayers ; Optoelectronic devices ; Photoluminescence ; Quenching ; Tungsten base alloys ; Vacancies</subject><ispartof>Advanced functional materials, 2017-05, Vol.27 (19), p.n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360047$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Puretzky, Alexander A.</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>KC, Santosh</creatorcontrib><creatorcontrib>Tian, Mengkun</creatorcontrib><creatorcontrib>Ceballos, Frank</creatorcontrib><creatorcontrib>Mahjouri‐Samani, Masoud</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Unocic, Raymond R.</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Cooper, Valentino R.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2</title><title>Advanced functional materials</title><description>Defects formed during chemical vapor deposition (CVD) of two‐dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed to enable next generation optoelectronic devices. In this work, isoelectronic doping is presented as a new strategy to form stable alloys and suppress defects and enhance photoluminescence (PL) in CVD‐grown TMD monolayers. The isoelectronic substitution of W atoms for Mo atoms in CVD‐grown monolayers of Mo1–
x
W
x
Se2 (0 < x < 0.18) is shown to effectively suppress Se vacancy concentration by 50% compared to those found in pristine MoSe2 monolayers, resulting in a decrease in defect‐mediated nonradiative recombination, ≈10 times more intense PL, and an increase in the carrier lifetime by a factor of 3. Theoretical predictions reveal that isoelectronic W alloying to form Mo1–
x
W
x
Se2 monolayers raises the energy of deep level defects in MoSe2 to enable faster quenching, which is confirmed by low temperature (4–125 K) PL from defect‐related localized states. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.
Isoelectronic tungsten alloying in MoSe2 monolayers, forming Mo1–
x
W
x
Se2, suppresses both the formation of Se vacancies in the lattice and the deep levels in the electronic bandgap. As a result, the photoluminescence is greatly enhanced by up to 10 times.</description><subject>Carrier lifetime</subject><subject>Chemical vapor deposition</subject><subject>Defects</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Heterogeneity</subject><subject>isoelectronic</subject><subject>MATERIALS SCIENCE</subject><subject>Mo1–xWxSe2</subject><subject>Monolayers</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><subject>Quenching</subject><subject>Tungsten base alloys</subject><subject>Vacancies</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxYMoWKtXz4ueU2fynWNprRZaPLQFb8tmd7ampLsxmyj9702o9DRveD8ej-d5jwgTBAhehNLHSQCYQJjFcOWNMMHEDyHIri8aP2-9O-cOAJimYTTy5Kar64acK61hVrM5aZKtY8KoXlPNVvRDlWM7V5o9WzpLVe831pSSbTuzdy0ZtukK15Zt1w4hpWFra2wlTtT0akPBvXejReXo4f-Ovd3idTt791cfb8vZdOXbEAB8FQmR5zoGokhLEoihojxNVSYyTDIlQKpMaZ1LlYoC4zyQUhU6gUgolRYYjr2nc67t23Any5bkl7TG9I05hglAlPbQ8xmqG_vdkWv5wXaN6XtxzAOIME5xoPIz9VtWdOJ1Ux5Fc-IIfJiaD1Pzy9R8Ol-sL1_4B347doA</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Li, Xufan</creator><creator>Puretzky, Alexander A.</creator><creator>Sang, Xiahan</creator><creator>KC, Santosh</creator><creator>Tian, Mengkun</creator><creator>Ceballos, Frank</creator><creator>Mahjouri‐Samani, Masoud</creator><creator>Wang, Kai</creator><creator>Unocic, Raymond R.</creator><creator>Zhao, Hui</creator><creator>Duscher, Gerd</creator><creator>Cooper, Valentino R.</creator><creator>Rouleau, Christopher M.</creator><creator>Geohegan, David B.</creator><creator>Xiao, Kai</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170518</creationdate><title>Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2</title><author>Li, Xufan ; Puretzky, Alexander A. ; Sang, Xiahan ; KC, Santosh ; Tian, Mengkun ; Ceballos, Frank ; Mahjouri‐Samani, Masoud ; Wang, Kai ; Unocic, Raymond R. ; Zhao, Hui ; Duscher, Gerd ; Cooper, Valentino R. ; Rouleau, Christopher M. ; Geohegan, David B. ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3000-d4aa99f50ee4fcea113de977d8a8168da0cd8dff9cd7ab1592ccdbf604add7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier lifetime</topic><topic>Chemical vapor deposition</topic><topic>Defects</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Heterogeneity</topic><topic>isoelectronic</topic><topic>MATERIALS SCIENCE</topic><topic>Mo1–xWxSe2</topic><topic>Monolayers</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><topic>Quenching</topic><topic>Tungsten base alloys</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Puretzky, Alexander A.</creatorcontrib><creatorcontrib>Sang, Xiahan</creatorcontrib><creatorcontrib>KC, Santosh</creatorcontrib><creatorcontrib>Tian, Mengkun</creatorcontrib><creatorcontrib>Ceballos, Frank</creatorcontrib><creatorcontrib>Mahjouri‐Samani, Masoud</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Unocic, Raymond R.</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Cooper, Valentino R.</creatorcontrib><creatorcontrib>Rouleau, Christopher M.</creatorcontrib><creatorcontrib>Geohegan, David B.</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xufan</au><au>Puretzky, Alexander A.</au><au>Sang, Xiahan</au><au>KC, Santosh</au><au>Tian, Mengkun</au><au>Ceballos, Frank</au><au>Mahjouri‐Samani, Masoud</au><au>Wang, Kai</au><au>Unocic, Raymond R.</au><au>Zhao, Hui</au><au>Duscher, Gerd</au><au>Cooper, Valentino R.</au><au>Rouleau, Christopher M.</au><au>Geohegan, David B.</au><au>Xiao, Kai</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2</atitle><jtitle>Advanced functional materials</jtitle><date>2017-05-18</date><risdate>2017</risdate><volume>27</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>Defects formed during chemical vapor deposition (CVD) of two‐dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed to enable next generation optoelectronic devices. In this work, isoelectronic doping is presented as a new strategy to form stable alloys and suppress defects and enhance photoluminescence (PL) in CVD‐grown TMD monolayers. The isoelectronic substitution of W atoms for Mo atoms in CVD‐grown monolayers of Mo1–
x
W
x
Se2 (0 < x < 0.18) is shown to effectively suppress Se vacancy concentration by 50% compared to those found in pristine MoSe2 monolayers, resulting in a decrease in defect‐mediated nonradiative recombination, ≈10 times more intense PL, and an increase in the carrier lifetime by a factor of 3. Theoretical predictions reveal that isoelectronic W alloying to form Mo1–
x
W
x
Se2 monolayers raises the energy of deep level defects in MoSe2 to enable faster quenching, which is confirmed by low temperature (4–125 K) PL from defect‐related localized states. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.
Isoelectronic tungsten alloying in MoSe2 monolayers, forming Mo1–
x
W
x
Se2, suppresses both the formation of Se vacancies in the lattice and the deep levels in the electronic bandgap. As a result, the photoluminescence is greatly enhanced by up to 10 times.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201603850</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-05, Vol.27 (19), p.n/a |
issn | 1616-301X 1616-3028 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1360047 |
source | Wiley |
subjects | Carrier lifetime Chemical vapor deposition Defects Doping Electronic devices Heterogeneity isoelectronic MATERIALS SCIENCE Mo1–xWxSe2 Monolayers Optoelectronic devices Photoluminescence Quenching Tungsten base alloys Vacancies |
title | Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Defects%20and%20Deep%20Levels%20Using%20Isoelectronic%20Tungsten%20Substitution%20in%20Monolayer%20MoSe2&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Xufan&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2017-05-18&rft.volume=27&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201603850&rft_dat=%3Cproquest_osti_%3E1920415717%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o3000-d4aa99f50ee4fcea113de977d8a8168da0cd8dff9cd7ab1592ccdbf604add7b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920415717&rft_id=info:pmid/&rfr_iscdi=true |