Loading…
A BRIEF OVERVIEW OF COMPARTMENTAL MODELING FOR INTAKE OF PLUTONIUM VIA WOUNDS
The aim of this study is to present several approaches that have been used to model the behavior of radioactive materials (specifically Pu) in contaminated wounds. We also review some attempts by the health physics community to validate and revise the National Council on Radiation Protection and Mea...
Saved in:
Published in: | Radiation protection dosimetry 2018-01, Vol.178 (1), p.29-36 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study is to present several approaches that have been used to model the behavior of radioactive materials (specifically Pu) in contaminated wounds. We also review some attempts by the health physics community to validate and revise the National Council on Radiation Protection and Measurements (NCRP) 156 biokinetic model for wounds, and present some general recommendations based on the review. Modeling of intake via the wound pathway is complicated because of a large array of wound characteristics (e.g. solubility and chemistry of the material, type and depth of the tissue injury, anatomical location of injury). Moreover, because a majority of the documented wound cases in humans are medically treated (excised or treated with chelation), the data to develop biokinetic models for unperturbed wound exposures are limited. Since the NCRP wound model was largely developed from animal data, it is important to continue to validate and improve the model using human data whenever plausible. |
---|---|
ISSN: | 0144-8420 1742-3406 |
DOI: | 10.1093/rpd/ncx071 |