Loading…

Fractional spectral collocation methods for linear and nonlinear variable order FPDEs

While several high-order methods have been developed for fractional PDEs (FPDEs) with fixed order, there are no such methods for FPDEs with field-variable order. These equations allow multiphysics simulations seamlessly, e.g. from diffusion to sub-diffusion or from wave dynamics transitioning to dif...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2015-07, Vol.293 (C), p.312-338
Main Authors: Zayernouri, Mohsen, Karniadakis, George Em
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033
cites cdi_FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033
container_end_page 338
container_issue C
container_start_page 312
container_title Journal of computational physics
container_volume 293
creator Zayernouri, Mohsen
Karniadakis, George Em
description While several high-order methods have been developed for fractional PDEs (FPDEs) with fixed order, there are no such methods for FPDEs with field-variable order. These equations allow multiphysics simulations seamlessly, e.g. from diffusion to sub-diffusion or from wave dynamics transitioning to diffusion, by simply varying the fractional order as a function of space or time. We develop an exponentially accurate fractional spectral collocation method for solving linear/nonlinear FPDEs with field-variable order. Following the spectral theory, developed in [1] for fractional Sturm-Liouville eigenproblems, we introduce a new family of interpolants, called left-/right-sided and central fractional Lagrange interpolants. We employ the fractional derivatives of (Ieft-/right-sided) Riemann-Liouville and Riesz type and obtain the corresponding fractional differentiation matrices by collocating the field-variable fractional orders. We solve several FPDEs including timeand space-fractional advection-equation, time- and space-fractional advection-diffusion equation, and finally the space-fractional Burgers' equation to demonstrate the performance of the method. In addition, we develop a spectral penalty method for enforcing inhomogeneous initial conditions. Our numerical results confirm the exponential-like convergence of the proposed fractional collocation methods.
doi_str_mv 10.1016/j.jcp.2014.12.001
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1367752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718939860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033</originalsourceid><addsrcrecordid>eNotkE1LwzAYgIMoOKc_wFvw5KU1b9I1yVHmpsJAD3oOafqGtXTNTDrBf2_Gdno_eHg_HkLugZXAoH7qy97tS86gKoGXjMEFmQHTrOAS6ksyY4xDobWGa3KTUs8YU4tKzcj3Olo3dWG0A017dFPMiQvDEJw9tukOp21oE_Uh0qEb0UZqx5aOYTxXvzZ2thmQhthipOvPl1W6JVfeDgnvznGe96y-lm_F5uP1ffm8KVyl1FQAYqVaL3gtBepWcWUdqyuV-4i1X0gnq1Z7r2WT73eNrD0qEMK13DcVE2JOHk5zQ5o6k1w3odu6MI75EQOilnLBM_R4gvYx_BwwTWbXJYfDYEcMh2RAgtJCq5plFE6oiyGliN7sY7ez8c8AM0fPpjfZszl6NsBN9iz-AVXucgI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718939860</pqid></control><display><type>article</type><title>Fractional spectral collocation methods for linear and nonlinear variable order FPDEs</title><source>ScienceDirect Freedom Collection</source><creator>Zayernouri, Mohsen ; Karniadakis, George Em</creator><creatorcontrib>Zayernouri, Mohsen ; Karniadakis, George Em</creatorcontrib><description>While several high-order methods have been developed for fractional PDEs (FPDEs) with fixed order, there are no such methods for FPDEs with field-variable order. These equations allow multiphysics simulations seamlessly, e.g. from diffusion to sub-diffusion or from wave dynamics transitioning to diffusion, by simply varying the fractional order as a function of space or time. We develop an exponentially accurate fractional spectral collocation method for solving linear/nonlinear FPDEs with field-variable order. Following the spectral theory, developed in [1] for fractional Sturm-Liouville eigenproblems, we introduce a new family of interpolants, called left-/right-sided and central fractional Lagrange interpolants. We employ the fractional derivatives of (Ieft-/right-sided) Riemann-Liouville and Riesz type and obtain the corresponding fractional differentiation matrices by collocating the field-variable fractional orders. We solve several FPDEs including timeand space-fractional advection-equation, time- and space-fractional advection-diffusion equation, and finally the space-fractional Burgers' equation to demonstrate the performance of the method. In addition, we develop a spectral penalty method for enforcing inhomogeneous initial conditions. Our numerical results confirm the exponential-like convergence of the proposed fractional collocation methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.12.001</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Advection-diffusion equation ; Collocation methods ; Diffusion ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Spectra ; Spectral lines</subject><ispartof>Journal of computational physics, 2015-07, Vol.293 (C), p.312-338</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033</citedby><cites>FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1367752$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>Fractional spectral collocation methods for linear and nonlinear variable order FPDEs</title><title>Journal of computational physics</title><description>While several high-order methods have been developed for fractional PDEs (FPDEs) with fixed order, there are no such methods for FPDEs with field-variable order. These equations allow multiphysics simulations seamlessly, e.g. from diffusion to sub-diffusion or from wave dynamics transitioning to diffusion, by simply varying the fractional order as a function of space or time. We develop an exponentially accurate fractional spectral collocation method for solving linear/nonlinear FPDEs with field-variable order. Following the spectral theory, developed in [1] for fractional Sturm-Liouville eigenproblems, we introduce a new family of interpolants, called left-/right-sided and central fractional Lagrange interpolants. We employ the fractional derivatives of (Ieft-/right-sided) Riemann-Liouville and Riesz type and obtain the corresponding fractional differentiation matrices by collocating the field-variable fractional orders. We solve several FPDEs including timeand space-fractional advection-equation, time- and space-fractional advection-diffusion equation, and finally the space-fractional Burgers' equation to demonstrate the performance of the method. In addition, we develop a spectral penalty method for enforcing inhomogeneous initial conditions. Our numerical results confirm the exponential-like convergence of the proposed fractional collocation methods.</description><subject>Advection-diffusion equation</subject><subject>Collocation methods</subject><subject>Diffusion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Spectra</subject><subject>Spectral lines</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE1LwzAYgIMoOKc_wFvw5KU1b9I1yVHmpsJAD3oOafqGtXTNTDrBf2_Gdno_eHg_HkLugZXAoH7qy97tS86gKoGXjMEFmQHTrOAS6ksyY4xDobWGa3KTUs8YU4tKzcj3Olo3dWG0A017dFPMiQvDEJw9tukOp21oE_Uh0qEb0UZqx5aOYTxXvzZ2thmQhthipOvPl1W6JVfeDgnvznGe96y-lm_F5uP1ffm8KVyl1FQAYqVaL3gtBepWcWUdqyuV-4i1X0gnq1Z7r2WT73eNrD0qEMK13DcVE2JOHk5zQ5o6k1w3odu6MI75EQOilnLBM_R4gvYx_BwwTWbXJYfDYEcMh2RAgtJCq5plFE6oiyGliN7sY7ez8c8AM0fPpjfZszl6NsBN9iz-AVXucgI</recordid><startdate>20150705</startdate><enddate>20150705</enddate><creator>Zayernouri, Mohsen</creator><creator>Karniadakis, George Em</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20150705</creationdate><title>Fractional spectral collocation methods for linear and nonlinear variable order FPDEs</title><author>Zayernouri, Mohsen ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advection-diffusion equation</topic><topic>Collocation methods</topic><topic>Diffusion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Spectra</topic><topic>Spectral lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zayernouri, Mohsen</au><au>Karniadakis, George Em</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional spectral collocation methods for linear and nonlinear variable order FPDEs</atitle><jtitle>Journal of computational physics</jtitle><date>2015-07-05</date><risdate>2015</risdate><volume>293</volume><issue>C</issue><spage>312</spage><epage>338</epage><pages>312-338</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>While several high-order methods have been developed for fractional PDEs (FPDEs) with fixed order, there are no such methods for FPDEs with field-variable order. These equations allow multiphysics simulations seamlessly, e.g. from diffusion to sub-diffusion or from wave dynamics transitioning to diffusion, by simply varying the fractional order as a function of space or time. We develop an exponentially accurate fractional spectral collocation method for solving linear/nonlinear FPDEs with field-variable order. Following the spectral theory, developed in [1] for fractional Sturm-Liouville eigenproblems, we introduce a new family of interpolants, called left-/right-sided and central fractional Lagrange interpolants. We employ the fractional derivatives of (Ieft-/right-sided) Riemann-Liouville and Riesz type and obtain the corresponding fractional differentiation matrices by collocating the field-variable fractional orders. We solve several FPDEs including timeand space-fractional advection-equation, time- and space-fractional advection-diffusion equation, and finally the space-fractional Burgers' equation to demonstrate the performance of the method. In addition, we develop a spectral penalty method for enforcing inhomogeneous initial conditions. Our numerical results confirm the exponential-like convergence of the proposed fractional collocation methods.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.jcp.2014.12.001</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-07, Vol.293 (C), p.312-338
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1367752
source ScienceDirect Freedom Collection
subjects Advection-diffusion equation
Collocation methods
Diffusion
Mathematical analysis
Mathematical models
Nonlinearity
Spectra
Spectral lines
title Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20spectral%20collocation%20methods%20for%20linear%20and%20nonlinear%20variable%20order%20FPDEs&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zayernouri,%20Mohsen&rft.date=2015-07-05&rft.volume=293&rft.issue=C&rft.spage=312&rft.epage=338&rft.pages=312-338&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.12.001&rft_dat=%3Cproquest_osti_%3E1718939860%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-1ee48df32673e9d828ac06481eeee6f57c74d9ff97b002cb76fe8133cd2fb4033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718939860&rft_id=info:pmid/&rfr_iscdi=true