Loading…
Thermal interfacial transport in the presence of ballistic heat modes
Thermal interface (Kapitza) resistance expresses how hard it is for heat to flow across material junctions inside multilayer structures. This quantity plays a crucial role in the thermal performance of nanoscale devices but is still poorly understood. Here we show that conventional Fourier-based met...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-07, Vol.90 (1), Article 014306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal interface (Kapitza) resistance expresses how hard it is for heat to flow across material junctions inside multilayer structures. This quantity plays a crucial role in the thermal performance of nanoscale devices but is still poorly understood. Here we show that conventional Fourier-based metrology overestimates metal/semiconductor resistances by up to threefold due to misinterpretation of ballistic heat flow modes. We achieve improved identification and a different physical insight with a truncated Levy formalism. This approach properly distinguishes interfacial dynamics from nearby quasiballistic heat flow suppression in the semiconductor. Unlike conventionally extracted values, interface resistances obtained with our new approach are independent of laser modulation frequency, as physically appropriate, and much more closely approach theoretical predictions. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.014306 |