Loading…

Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes

The ruthenium hydride [RuH­(CNN)­(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis­(diphenylphosphino)­butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2016-02, Vol.55 (4), p.1623-1632
Main Authors: Ramakrishnan, Srinivasan, Waldie, Kate M, Warnke, Ingolf, De Crisci, Antonio G, Batista, Victor S, Waymouth, Robert M, Chidsey, Christopher E. D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1632
container_issue 4
container_start_page 1623
container_title Inorganic chemistry
container_volume 55
creator Ramakrishnan, Srinivasan
Waldie, Kate M
Warnke, Ingolf
De Crisci, Antonio G
Batista, Victor S
Waymouth, Robert M
Chidsey, Christopher E. D
description The ruthenium hydride [RuH­(CNN)­(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis­(diphenylphosphino)­butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°298 K = −3.1 kcal/mol measured by 1H NMR in tetrahydrofuran-d 8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru–hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N–H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru–H hydride transfer to CO2 followed by rotation of the resulting N–H-stabilized formate to a Ru–O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.
doi_str_mv 10.1021/acs.inorgchem.5b02556
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1369917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765579905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-5ae628a4ea02ff27f442210ac32d8abf481ad25a80246ea8d808c9b63f506fbb3</originalsourceid><addsrcrecordid>eNo9kV1LwzAUhoMobn78BCV45c3mSdpk6aUMdYOBoBO8C2l66iJtMpsU3L-3sunV-eDhwHkfQq4YTBlwdmdsnDofug-7wXYqSuBCyCMyZoLDRDB4PyZjgKFnUhYjchbjJwAUWS5PyYhLlYlCZWOyfvjeYuda9Mk01PiKrjcYOkzODvNr6qsdDTWdP3O69BG75IKnzqdAX_q0Qe_6li52VecqpPPQbhv8xnhBTmrTRLw81HPy9viwni8mq-en5fx-NTFcQZoIg5Irk6MBXtd8Vuc55wyMzXilTFnnipmKC6OA5xKNqhQoW5QyqwXIuiyzc3Kzvxticjpal9BubPAebdIsk0XBZgN0u4e2XfjqMSbdumixaYzH0EfNZlKIWVGAGNDrA9qXLVZ6OwRjup3-i2sA2B4Y0tefoe_88J5moH-V6N_lvxJ9UJL9ABlLgEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765579905</pqid></control><display><type>article</type><title>Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ramakrishnan, Srinivasan ; Waldie, Kate M ; Warnke, Ingolf ; De Crisci, Antonio G ; Batista, Victor S ; Waymouth, Robert M ; Chidsey, Christopher E. D</creator><creatorcontrib>Ramakrishnan, Srinivasan ; Waldie, Kate M ; Warnke, Ingolf ; De Crisci, Antonio G ; Batista, Victor S ; Waymouth, Robert M ; Chidsey, Christopher E. D ; Energy Frontier Research Centers (EFRC) (United States). Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (CETM)</creatorcontrib><description>The ruthenium hydride [RuH­(CNN)­(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis­(diphenylphosphino)­butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°298 K = −3.1 kcal/mol measured by 1H NMR in tetrahydrofuran-d 8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru–hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N–H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru–H hydride transfer to CO2 followed by rotation of the resulting N–H-stabilized formate to a Ru–O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.5b02556</identifier><identifier>PMID: 26835983</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Inorganic chemistry, 2016-02, Vol.55 (4), p.1623-1632</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26835983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1369917$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramakrishnan, Srinivasan</creatorcontrib><creatorcontrib>Waldie, Kate M</creatorcontrib><creatorcontrib>Warnke, Ingolf</creatorcontrib><creatorcontrib>De Crisci, Antonio G</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Waymouth, Robert M</creatorcontrib><creatorcontrib>Chidsey, Christopher E. D</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (CETM)</creatorcontrib><title>Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>The ruthenium hydride [RuH­(CNN)­(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis­(diphenylphosphino)­butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°298 K = −3.1 kcal/mol measured by 1H NMR in tetrahydrofuran-d 8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru–hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N–H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru–H hydride transfer to CO2 followed by rotation of the resulting N–H-stabilized formate to a Ru–O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kV1LwzAUhoMobn78BCV45c3mSdpk6aUMdYOBoBO8C2l66iJtMpsU3L-3sunV-eDhwHkfQq4YTBlwdmdsnDofug-7wXYqSuBCyCMyZoLDRDB4PyZjgKFnUhYjchbjJwAUWS5PyYhLlYlCZWOyfvjeYuda9Mk01PiKrjcYOkzODvNr6qsdDTWdP3O69BG75IKnzqdAX_q0Qe_6li52VecqpPPQbhv8xnhBTmrTRLw81HPy9viwni8mq-en5fx-NTFcQZoIg5Irk6MBXtd8Vuc55wyMzXilTFnnipmKC6OA5xKNqhQoW5QyqwXIuiyzc3Kzvxticjpal9BubPAebdIsk0XBZgN0u4e2XfjqMSbdumixaYzH0EfNZlKIWVGAGNDrA9qXLVZ6OwRjup3-i2sA2B4Y0tefoe_88J5moH-V6N_lvxJ9UJL9ABlLgEY</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Ramakrishnan, Srinivasan</creator><creator>Waldie, Kate M</creator><creator>Warnke, Ingolf</creator><creator>De Crisci, Antonio G</creator><creator>Batista, Victor S</creator><creator>Waymouth, Robert M</creator><creator>Chidsey, Christopher E. D</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160215</creationdate><title>Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes</title><author>Ramakrishnan, Srinivasan ; Waldie, Kate M ; Warnke, Ingolf ; De Crisci, Antonio G ; Batista, Victor S ; Waymouth, Robert M ; Chidsey, Christopher E. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-5ae628a4ea02ff27f442210ac32d8abf481ad25a80246ea8d808c9b63f506fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakrishnan, Srinivasan</creatorcontrib><creatorcontrib>Waldie, Kate M</creatorcontrib><creatorcontrib>Warnke, Ingolf</creatorcontrib><creatorcontrib>De Crisci, Antonio G</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Waymouth, Robert M</creatorcontrib><creatorcontrib>Chidsey, Christopher E. D</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (CETM)</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakrishnan, Srinivasan</au><au>Waldie, Kate M</au><au>Warnke, Ingolf</au><au>De Crisci, Antonio G</au><au>Batista, Victor S</au><au>Waymouth, Robert M</au><au>Chidsey, Christopher E. D</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (CETM)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2016-02-15</date><risdate>2016</risdate><volume>55</volume><issue>4</issue><spage>1623</spage><epage>1632</epage><pages>1623-1632</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>The ruthenium hydride [RuH­(CNN)­(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis­(diphenylphosphino)­butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°298 K = −3.1 kcal/mol measured by 1H NMR in tetrahydrofuran-d 8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru–hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N–H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru–H hydride transfer to CO2 followed by rotation of the resulting N–H-stabilized formate to a Ru–O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26835983</pmid><doi>10.1021/acs.inorgchem.5b02556</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2016-02, Vol.55 (4), p.1623-1632
issn 0020-1669
1520-510X
language eng
recordid cdi_osti_scitechconnect_1369917
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Theoretical%20Study%20of%20CO2%20Insertion%20into%20Ruthenium%20Hydride%20Complexes&rft.jtitle=Inorganic%20chemistry&rft.au=Ramakrishnan,%20Srinivasan&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Electrocatalysis,%20Transport%20Phenomena%20and%20Materials%20for%20Innovative%20Energy%20Storage%20(CETM)&rft.date=2016-02-15&rft.volume=55&rft.issue=4&rft.spage=1623&rft.epage=1632&rft.pages=1623-1632&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.5b02556&rft_dat=%3Cproquest_osti_%3E1765579905%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-5ae628a4ea02ff27f442210ac32d8abf481ad25a80246ea8d808c9b63f506fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765579905&rft_id=info:pmid/26835983&rfr_iscdi=true