Loading…

Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries

Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid–electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2014-12, Vol.6 (23), p.21510-21524
Main Authors: Schroder, Kjell W, Dylla, Anthony G, Harris, Stephen J, Webb, Lauren J, Stevenson, Keith J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3
cites cdi_FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3
container_end_page 21524
container_issue 23
container_start_page 21510
container_title ACS applied materials & interfaces
container_volume 6
creator Schroder, Kjell W
Dylla, Anthony G
Harris, Stephen J
Webb, Lauren J
Stevenson, Keith J
description Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid–electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI.
doi_str_mv 10.1021/am506517j
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1370056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635007938</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3</originalsourceid><addsrcrecordid>eNpt0c1KJDEQB_CwKOvXHvYFliAIemhNJZ1Oz1FF3YEBYfUeMulqJkN3ZzZJg3ryHXxDn8S4M85pL0kgv_onVBHyE9g5MA4XppeskqCW38g-TMqyqLnkO9tzWe6RgxiXjFWCM_md7HFZMs4V7JOXP75D6lv6MIbWWKT3T67BSN1A0wLprQ-9Sc4P_4jvXPP--nbToU3Bd88J6XRIGFYLE3ONSfTBdc5mvSGfSa0PdObSwo19Mc1XVyblEofxiOy2pov4Y7Mfksfbm8fr38Xs_m56fTkrTMnqVIBqYG5qCVxMgNdghWSiaeaAtlagDFfKSlSIeRVlJRQXwFrBjSntxFpxSI7XsT4mp6N1Ce0i_3HIP9QgFGOyyuh0jVbB_x0xJt27aLHrzIB-jBqq_CpTE1FneramNvgYA7Z6FVxvwrMGpj_HobfjyPbXJnac99hs5Vf_MzhZA2OjXvoxDLkT_wn6AEXJkeU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635007938</pqid></control><display><type>article</type><title>Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Schroder, Kjell W ; Dylla, Anthony G ; Harris, Stephen J ; Webb, Lauren J ; Stevenson, Keith J</creator><creatorcontrib>Schroder, Kjell W ; Dylla, Anthony G ; Harris, Stephen J ; Webb, Lauren J ; Stevenson, Keith J ; Energy Frontier Research Centers (EFRC) (United States). Understanding Charge Separation and Transfer at Interfaces in Energy Materials (CST)</creatorcontrib><description>Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid–electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am506517j</identifier><identifier>PMID: 25402271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2014-12, Vol.6 (23), p.21510-21524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3</citedby><cites>FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25402271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1370056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroder, Kjell W</creatorcontrib><creatorcontrib>Dylla, Anthony G</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Stevenson, Keith J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Understanding Charge Separation and Transfer at Interfaces in Energy Materials (CST)</creatorcontrib><title>Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid–electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0c1KJDEQB_CwKOvXHvYFliAIemhNJZ1Oz1FF3YEBYfUeMulqJkN3ZzZJg3ryHXxDn8S4M85pL0kgv_onVBHyE9g5MA4XppeskqCW38g-TMqyqLnkO9tzWe6RgxiXjFWCM_md7HFZMs4V7JOXP75D6lv6MIbWWKT3T67BSN1A0wLprQ-9Sc4P_4jvXPP--nbToU3Bd88J6XRIGFYLE3ONSfTBdc5mvSGfSa0PdObSwo19Mc1XVyblEofxiOy2pov4Y7Mfksfbm8fr38Xs_m56fTkrTMnqVIBqYG5qCVxMgNdghWSiaeaAtlagDFfKSlSIeRVlJRQXwFrBjSntxFpxSI7XsT4mp6N1Ce0i_3HIP9QgFGOyyuh0jVbB_x0xJt27aLHrzIB-jBqq_CpTE1FneramNvgYA7Z6FVxvwrMGpj_HobfjyPbXJnac99hs5Vf_MzhZA2OjXvoxDLkT_wn6AEXJkeU</recordid><startdate>20141210</startdate><enddate>20141210</enddate><creator>Schroder, Kjell W</creator><creator>Dylla, Anthony G</creator><creator>Harris, Stephen J</creator><creator>Webb, Lauren J</creator><creator>Stevenson, Keith J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20141210</creationdate><title>Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries</title><author>Schroder, Kjell W ; Dylla, Anthony G ; Harris, Stephen J ; Webb, Lauren J ; Stevenson, Keith J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroder, Kjell W</creatorcontrib><creatorcontrib>Dylla, Anthony G</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>Webb, Lauren J</creatorcontrib><creatorcontrib>Stevenson, Keith J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Understanding Charge Separation and Transfer at Interfaces in Energy Materials (CST)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroder, Kjell W</au><au>Dylla, Anthony G</au><au>Harris, Stephen J</au><au>Webb, Lauren J</au><au>Stevenson, Keith J</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Understanding Charge Separation and Transfer at Interfaces in Energy Materials (CST)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-12-10</date><risdate>2014</risdate><volume>6</volume><issue>23</issue><spage>21510</spage><epage>21524</epage><pages>21510-21524</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid–electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25402271</pmid><doi>10.1021/am506517j</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2014-12, Vol.6 (23), p.21510-21524
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1370056
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Surface%20Oxides%20in%20the%20Formation%20of%20Solid%E2%80%93Electrolyte%20Interphases%20at%20Silicon%20Electrodes%20for%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Schroder,%20Kjell%20W&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Understanding%20Charge%20Separation%20and%20Transfer%20at%20Interfaces%20in%20Energy%20Materials%20(CST)&rft.date=2014-12-10&rft.volume=6&rft.issue=23&rft.spage=21510&rft.epage=21524&rft.pages=21510-21524&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am506517j&rft_dat=%3Cproquest_osti_%3E1635007938%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-17d1ba8512391281c3503ddb1ec8717a277c5e7eec5e346372310f32aa4c9cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1635007938&rft_id=info:pmid/25402271&rfr_iscdi=true