Loading…

Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies

Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon–exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chir...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-12, Vol.14 (12), p.6799-6810
Main Authors: Hu, Tao, Isaacoff, Benjamin P, Bahng, Joong Hwan, Hao, Changlong, Zhou, Yunlong, Zhu, Jian, Li, Xinyu, Wang, Zhenlong, Liu, Shaoqin, Xu, Chuanlai, Biteen, Julie S, Kotov, Nicholas A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3
cites cdi_FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3
container_end_page 6810
container_issue 12
container_start_page 6799
container_title Nano letters
container_volume 14
creator Hu, Tao
Isaacoff, Benjamin P
Bahng, Joong Hwan
Hao, Changlong
Zhou, Yunlong
Zhu, Jian
Li, Xinyu
Wang, Zhenlong
Liu, Shaoqin
Xu, Chuanlai
Biteen, Julie S
Kotov, Nicholas A
description Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon–exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon–exciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR–NP assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.
doi_str_mv 10.1021/nl502237f
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1370107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762064933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3</originalsourceid><addsrcrecordid>eNpt0Etv1DAQB3ALUdFSOPAFUISEBIfA-BFnc6xW5SFVLaK9WxPHYV059uJxpMKnb2C320tPHks_zePP2BsOnzgI_jmGBoSQ7fiMnfBGQq27Tjw_1Ct1zF4S3QJAJxt4wY5FowA4wAnbXLsw1lf5F0b_F4tPsUpj9SMgTSl6W2EcqvM768v_3yXGtMVcvA2OKh9Lqn46ShFjqdYbnzFU1_M244Opzojc1Afv6BU7GjGQe71_T9nNl_Ob9bf64urr9_XZRY0KmlJrKZVGPSAXTWtd47jmQjpuZa9ci32L0Aipx17hKAcUamWxH3q76sEOyslT9m7XNlHxhpbFnd3YFKOzxXDZLle3C_qwQ9ucfs-Oipk8WRcCRpdmMrzVArTqpFzoxx21ORFlN5pt9hPmP4aD-Re-OYS_2Lf7tnM_ueEgH9JewPs9QLIYxozRenp0HWihQT06tGRu05zjktgTA-8Bt4KZIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762064933</pqid></control><display><type>article</type><title>Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hu, Tao ; Isaacoff, Benjamin P ; Bahng, Joong Hwan ; Hao, Changlong ; Zhou, Yunlong ; Zhu, Jian ; Li, Xinyu ; Wang, Zhenlong ; Liu, Shaoqin ; Xu, Chuanlai ; Biteen, Julie S ; Kotov, Nicholas A</creator><creatorcontrib>Hu, Tao ; Isaacoff, Benjamin P ; Bahng, Joong Hwan ; Hao, Changlong ; Zhou, Yunlong ; Zhu, Jian ; Li, Xinyu ; Wang, Zhenlong ; Liu, Shaoqin ; Xu, Chuanlai ; Biteen, Julie S ; Kotov, Nicholas A ; Energy Frontier Research Centers (EFRC) (United States). Center for Solar and Thermal Energy Conversion (CSTEC)</creatorcontrib><description>Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon–exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon–exciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR–NP assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl502237f</identifier><identifier>PMID: 25400100</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Assemblies ; Cadmium tellurides ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Dimers ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Excitation ; Excitons and related phenomena ; Joining ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Physics ; Plasmons ; Semiconductors ; Surface and interface electron states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2014-12, Vol.14 (12), p.6799-6810</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3</citedby><cites>FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29062604$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25400100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1370107$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Isaacoff, Benjamin P</creatorcontrib><creatorcontrib>Bahng, Joong Hwan</creatorcontrib><creatorcontrib>Hao, Changlong</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Wang, Zhenlong</creatorcontrib><creatorcontrib>Liu, Shaoqin</creatorcontrib><creatorcontrib>Xu, Chuanlai</creatorcontrib><creatorcontrib>Biteen, Julie S</creatorcontrib><creatorcontrib>Kotov, Nicholas A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar and Thermal Energy Conversion (CSTEC)</creatorcontrib><title>Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon–exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon–exciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR–NP assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.</description><subject>Assemblies</subject><subject>Cadmium tellurides</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dimers</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Excitons and related phenomena</subject><subject>Joining</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Semiconductors</subject><subject>Surface and interface electron states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0Etv1DAQB3ALUdFSOPAFUISEBIfA-BFnc6xW5SFVLaK9WxPHYV059uJxpMKnb2C320tPHks_zePP2BsOnzgI_jmGBoSQ7fiMnfBGQq27Tjw_1Ct1zF4S3QJAJxt4wY5FowA4wAnbXLsw1lf5F0b_F4tPsUpj9SMgTSl6W2EcqvM768v_3yXGtMVcvA2OKh9Lqn46ShFjqdYbnzFU1_M244Opzojc1Afv6BU7GjGQe71_T9nNl_Ob9bf64urr9_XZRY0KmlJrKZVGPSAXTWtd47jmQjpuZa9ci32L0Aipx17hKAcUamWxH3q76sEOyslT9m7XNlHxhpbFnd3YFKOzxXDZLle3C_qwQ9ucfs-Oipk8WRcCRpdmMrzVArTqpFzoxx21ORFlN5pt9hPmP4aD-Re-OYS_2Lf7tnM_ueEgH9JewPs9QLIYxozRenp0HWihQT06tGRu05zjktgTA-8Bt4KZIA</recordid><startdate>20141210</startdate><enddate>20141210</enddate><creator>Hu, Tao</creator><creator>Isaacoff, Benjamin P</creator><creator>Bahng, Joong Hwan</creator><creator>Hao, Changlong</creator><creator>Zhou, Yunlong</creator><creator>Zhu, Jian</creator><creator>Li, Xinyu</creator><creator>Wang, Zhenlong</creator><creator>Liu, Shaoqin</creator><creator>Xu, Chuanlai</creator><creator>Biteen, Julie S</creator><creator>Kotov, Nicholas A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141210</creationdate><title>Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies</title><author>Hu, Tao ; Isaacoff, Benjamin P ; Bahng, Joong Hwan ; Hao, Changlong ; Zhou, Yunlong ; Zhu, Jian ; Li, Xinyu ; Wang, Zhenlong ; Liu, Shaoqin ; Xu, Chuanlai ; Biteen, Julie S ; Kotov, Nicholas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assemblies</topic><topic>Cadmium tellurides</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dimers</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Excitons and related phenomena</topic><topic>Joining</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Semiconductors</topic><topic>Surface and interface electron states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Isaacoff, Benjamin P</creatorcontrib><creatorcontrib>Bahng, Joong Hwan</creatorcontrib><creatorcontrib>Hao, Changlong</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Wang, Zhenlong</creatorcontrib><creatorcontrib>Liu, Shaoqin</creatorcontrib><creatorcontrib>Xu, Chuanlai</creatorcontrib><creatorcontrib>Biteen, Julie S</creatorcontrib><creatorcontrib>Kotov, Nicholas A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Solar and Thermal Energy Conversion (CSTEC)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Tao</au><au>Isaacoff, Benjamin P</au><au>Bahng, Joong Hwan</au><au>Hao, Changlong</au><au>Zhou, Yunlong</au><au>Zhu, Jian</au><au>Li, Xinyu</au><au>Wang, Zhenlong</au><au>Liu, Shaoqin</au><au>Xu, Chuanlai</au><au>Biteen, Julie S</au><au>Kotov, Nicholas A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Solar and Thermal Energy Conversion (CSTEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-12-10</date><risdate>2014</risdate><volume>14</volume><issue>12</issue><spage>6799</spage><epage>6810</epage><pages>6799-6810</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon–exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon–exciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR–NP assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25400100</pmid><doi>10.1021/nl502237f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-12, Vol.14 (12), p.6799-6810
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1370107
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Assemblies
Cadmium tellurides
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Dimers
Electron states
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Excitation
Excitons and related phenomena
Joining
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Physics
Plasmons
Semiconductors
Surface and interface electron states
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organization%20of%20Plasmonic%20and%20Excitonic%20Nanoparticles%20into%20Resonant%20Chiral%20Supraparticle%20Assemblies&rft.jtitle=Nano%20letters&rft.au=Hu,%20Tao&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Solar%20and%20Thermal%20Energy%20Conversion%20(CSTEC)&rft.date=2014-12-10&rft.volume=14&rft.issue=12&rft.spage=6799&rft.epage=6810&rft.pages=6799-6810&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl502237f&rft_dat=%3Cproquest_osti_%3E1762064933%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-63346a6da1257ce5e16123e1c3b4e7ab7a05236fb4af3da248cabdbc8b0cd4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762064933&rft_id=info:pmid/25400100&rfr_iscdi=true