Loading…

Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2015-10, Vol.9 (10), p.9772-9782
Main Authors: Miller, Joseph B, Dandu, Naveen, Velizhanin, Kirill A, Anthony, Rebecca J, Kortshagen, Uwe R, Kroll, Daniel M, Kilina, Svetlana, Hobbie, Erik K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853
cites cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853
container_end_page 9782
container_issue 10
container_start_page 9772
container_title ACS nano
container_volume 9
creator Miller, Joseph B
Dandu, Naveen
Velizhanin, Kirill A
Anthony, Rebecca J
Kortshagen, Uwe R
Kroll, Daniel M
Kilina, Svetlana
Hobbie, Erik K
description Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.
doi_str_mv 10.1021/acsnano.5b02676
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1370941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727986966</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoPkbX7iS4EmRmkj7SdiniCwYVVHBluE1v20gn0SRdzL83MuPsXCUh53589xByytmMs4TPQXkDxs7ymiWiEDvkkFepmLJSvO9u7zk_IEfefzKWF2Uh9slBItKsLFN-SD5uTA9GYUMX41Ib9ApNoC8Baj3osKKhd3bsevoMLmg1IH0wAR2ooK3xVBv6EjllDX2MNZRb-QADveo6hx0E9Mdkr4XB48nmnJC325vX6_vp4unu4fpqMYWM8TDNIKlj56JRHEqVVdAmVVtnAGl8NIWqG9HETwSEnOUVKIYJsoa3dd2mZZmnE3K-zrU-aOmVDqj6WMugCpKnBasyHqGLNfTl7PeIPsiljvsOAxi0o5e8SIqqFJUQEZ2vUeWs9w5b-eX0EtxKciZ_zcuNebkxHyfONuFjvcRmy_-pjsDlGoiT8tOOzkQh_8b9AHSEkYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727986966</pqid></control><display><type>article</type><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K</creator><creatorcontrib>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K ; Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><description>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b02676</identifier><identifier>PMID: 26348831</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bio-inspired ; charge transport ; defects ; electrodes - solar ; energy transfer ; fluorescence intermittency ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials and chemistry by design ; nanocrystal interactions ; NANOSCIENCE AND NANOTECHNOLOGY ; optics ; silicon nanocrystals ; solar (fuels) ; solar (photovoltaic) ; solid state lighting ; synthesis (novel materials) ; synthesis (scalable processing)</subject><ispartof>ACS nano, 2015-10, Vol.9 (10), p.9772-9782</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</citedby><cites>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1370941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Joseph B</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Velizhanin, Kirill A</creatorcontrib><creatorcontrib>Anthony, Rebecca J</creatorcontrib><creatorcontrib>Kortshagen, Uwe R</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>Kilina, Svetlana</creatorcontrib><creatorcontrib>Hobbie, Erik K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</description><subject>bio-inspired</subject><subject>charge transport</subject><subject>defects</subject><subject>electrodes - solar</subject><subject>energy transfer</subject><subject>fluorescence intermittency</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials and chemistry by design</subject><subject>nanocrystal interactions</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>optics</subject><subject>silicon nanocrystals</subject><subject>solar (fuels)</subject><subject>solar (photovoltaic)</subject><subject>solid state lighting</subject><subject>synthesis (novel materials)</subject><subject>synthesis (scalable processing)</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMoPkbX7iS4EmRmkj7SdiniCwYVVHBluE1v20gn0SRdzL83MuPsXCUh53589xByytmMs4TPQXkDxs7ymiWiEDvkkFepmLJSvO9u7zk_IEfefzKWF2Uh9slBItKsLFN-SD5uTA9GYUMX41Ib9ApNoC8Baj3osKKhd3bsevoMLmg1IH0wAR2ooK3xVBv6EjllDX2MNZRb-QADveo6hx0E9Mdkr4XB48nmnJC325vX6_vp4unu4fpqMYWM8TDNIKlj56JRHEqVVdAmVVtnAGl8NIWqG9HETwSEnOUVKIYJsoa3dd2mZZmnE3K-zrU-aOmVDqj6WMugCpKnBasyHqGLNfTl7PeIPsiljvsOAxi0o5e8SIqqFJUQEZ2vUeWs9w5b-eX0EtxKciZ_zcuNebkxHyfONuFjvcRmy_-pjsDlGoiT8tOOzkQh_8b9AHSEkYU</recordid><startdate>20151027</startdate><enddate>20151027</enddate><creator>Miller, Joseph B</creator><creator>Dandu, Naveen</creator><creator>Velizhanin, Kirill A</creator><creator>Anthony, Rebecca J</creator><creator>Kortshagen, Uwe R</creator><creator>Kroll, Daniel M</creator><creator>Kilina, Svetlana</creator><creator>Hobbie, Erik K</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151027</creationdate><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><author>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bio-inspired</topic><topic>charge transport</topic><topic>defects</topic><topic>electrodes - solar</topic><topic>energy transfer</topic><topic>fluorescence intermittency</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials and chemistry by design</topic><topic>nanocrystal interactions</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>optics</topic><topic>silicon nanocrystals</topic><topic>solar (fuels)</topic><topic>solar (photovoltaic)</topic><topic>solid state lighting</topic><topic>synthesis (novel materials)</topic><topic>synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Joseph B</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Velizhanin, Kirill A</creatorcontrib><creatorcontrib>Anthony, Rebecca J</creatorcontrib><creatorcontrib>Kortshagen, Uwe R</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>Kilina, Svetlana</creatorcontrib><creatorcontrib>Hobbie, Erik K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Joseph B</au><au>Dandu, Naveen</au><au>Velizhanin, Kirill A</au><au>Anthony, Rebecca J</au><au>Kortshagen, Uwe R</au><au>Kroll, Daniel M</au><au>Kilina, Svetlana</au><au>Hobbie, Erik K</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-10-27</date><risdate>2015</risdate><volume>9</volume><issue>10</issue><spage>9772</spage><epage>9782</epage><pages>9772-9782</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26348831</pmid><doi>10.1021/acsnano.5b02676</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-10, Vol.9 (10), p.9772-9782
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1370941
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects bio-inspired
charge transport
defects
electrodes - solar
energy transfer
fluorescence intermittency
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
materials and chemistry by design
nanocrystal interactions
NANOSCIENCE AND NANOTECHNOLOGY
optics
silicon nanocrystals
solar (fuels)
solar (photovoltaic)
solid state lighting
synthesis (novel materials)
synthesis (scalable processing)
title Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Luminescent%20Stability%20through%20Particle%20Interactions%20in%20Silicon%20Nanocrystal%20Aggregates&rft.jtitle=ACS%20nano&rft.au=Miller,%20Joseph%20B&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Advanced%20Solar%20Photophysics%20(CASP)&rft.date=2015-10-27&rft.volume=9&rft.issue=10&rft.spage=9772&rft.epage=9782&rft.pages=9772-9782&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b02676&rft_dat=%3Cproquest_osti_%3E1727986966%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727986966&rft_id=info:pmid/26348831&rfr_iscdi=true