Loading…
Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates
Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent...
Saved in:
Published in: | ACS nano 2015-10, Vol.9 (10), p.9772-9782 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853 |
---|---|
cites | cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853 |
container_end_page | 9782 |
container_issue | 10 |
container_start_page | 9772 |
container_title | ACS nano |
container_volume | 9 |
creator | Miller, Joseph B Dandu, Naveen Velizhanin, Kirill A Anthony, Rebecca J Kortshagen, Uwe R Kroll, Daniel M Kilina, Svetlana Hobbie, Erik K |
description | Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons. |
doi_str_mv | 10.1021/acsnano.5b02676 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1370941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727986966</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoPkbX7iS4EmRmkj7SdiniCwYVVHBluE1v20gn0SRdzL83MuPsXCUh53589xByytmMs4TPQXkDxs7ymiWiEDvkkFepmLJSvO9u7zk_IEfefzKWF2Uh9slBItKsLFN-SD5uTA9GYUMX41Ib9ApNoC8Baj3osKKhd3bsevoMLmg1IH0wAR2ooK3xVBv6EjllDX2MNZRb-QADveo6hx0E9Mdkr4XB48nmnJC325vX6_vp4unu4fpqMYWM8TDNIKlj56JRHEqVVdAmVVtnAGl8NIWqG9HETwSEnOUVKIYJsoa3dd2mZZmnE3K-zrU-aOmVDqj6WMugCpKnBasyHqGLNfTl7PeIPsiljvsOAxi0o5e8SIqqFJUQEZ2vUeWs9w5b-eX0EtxKciZ_zcuNebkxHyfONuFjvcRmy_-pjsDlGoiT8tOOzkQh_8b9AHSEkYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727986966</pqid></control><display><type>article</type><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K</creator><creatorcontrib>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K ; Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><description>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b02676</identifier><identifier>PMID: 26348831</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bio-inspired ; charge transport ; defects ; electrodes - solar ; energy transfer ; fluorescence intermittency ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials and chemistry by design ; nanocrystal interactions ; NANOSCIENCE AND NANOTECHNOLOGY ; optics ; silicon nanocrystals ; solar (fuels) ; solar (photovoltaic) ; solid state lighting ; synthesis (novel materials) ; synthesis (scalable processing)</subject><ispartof>ACS nano, 2015-10, Vol.9 (10), p.9772-9782</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</citedby><cites>FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1370941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Joseph B</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Velizhanin, Kirill A</creatorcontrib><creatorcontrib>Anthony, Rebecca J</creatorcontrib><creatorcontrib>Kortshagen, Uwe R</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>Kilina, Svetlana</creatorcontrib><creatorcontrib>Hobbie, Erik K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</description><subject>bio-inspired</subject><subject>charge transport</subject><subject>defects</subject><subject>electrodes - solar</subject><subject>energy transfer</subject><subject>fluorescence intermittency</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials and chemistry by design</subject><subject>nanocrystal interactions</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>optics</subject><subject>silicon nanocrystals</subject><subject>solar (fuels)</subject><subject>solar (photovoltaic)</subject><subject>solid state lighting</subject><subject>synthesis (novel materials)</subject><subject>synthesis (scalable processing)</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMoPkbX7iS4EmRmkj7SdiniCwYVVHBluE1v20gn0SRdzL83MuPsXCUh53589xByytmMs4TPQXkDxs7ymiWiEDvkkFepmLJSvO9u7zk_IEfefzKWF2Uh9slBItKsLFN-SD5uTA9GYUMX41Ib9ApNoC8Baj3osKKhd3bsevoMLmg1IH0wAR2ooK3xVBv6EjllDX2MNZRb-QADveo6hx0E9Mdkr4XB48nmnJC325vX6_vp4unu4fpqMYWM8TDNIKlj56JRHEqVVdAmVVtnAGl8NIWqG9HETwSEnOUVKIYJsoa3dd2mZZmnE3K-zrU-aOmVDqj6WMugCpKnBasyHqGLNfTl7PeIPsiljvsOAxi0o5e8SIqqFJUQEZ2vUeWs9w5b-eX0EtxKciZ_zcuNebkxHyfONuFjvcRmy_-pjsDlGoiT8tOOzkQh_8b9AHSEkYU</recordid><startdate>20151027</startdate><enddate>20151027</enddate><creator>Miller, Joseph B</creator><creator>Dandu, Naveen</creator><creator>Velizhanin, Kirill A</creator><creator>Anthony, Rebecca J</creator><creator>Kortshagen, Uwe R</creator><creator>Kroll, Daniel M</creator><creator>Kilina, Svetlana</creator><creator>Hobbie, Erik K</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151027</creationdate><title>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</title><author>Miller, Joseph B ; Dandu, Naveen ; Velizhanin, Kirill A ; Anthony, Rebecca J ; Kortshagen, Uwe R ; Kroll, Daniel M ; Kilina, Svetlana ; Hobbie, Erik K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bio-inspired</topic><topic>charge transport</topic><topic>defects</topic><topic>electrodes - solar</topic><topic>energy transfer</topic><topic>fluorescence intermittency</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials and chemistry by design</topic><topic>nanocrystal interactions</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>optics</topic><topic>silicon nanocrystals</topic><topic>solar (fuels)</topic><topic>solar (photovoltaic)</topic><topic>solid state lighting</topic><topic>synthesis (novel materials)</topic><topic>synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Joseph B</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Velizhanin, Kirill A</creatorcontrib><creatorcontrib>Anthony, Rebecca J</creatorcontrib><creatorcontrib>Kortshagen, Uwe R</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>Kilina, Svetlana</creatorcontrib><creatorcontrib>Hobbie, Erik K</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Joseph B</au><au>Dandu, Naveen</au><au>Velizhanin, Kirill A</au><au>Anthony, Rebecca J</au><au>Kortshagen, Uwe R</au><au>Kroll, Daniel M</au><au>Kilina, Svetlana</au><au>Hobbie, Erik K</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-10-27</date><risdate>2015</risdate><volume>9</volume><issue>10</issue><spage>9772</spage><epage>9782</epage><pages>9772-9782</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26348831</pmid><doi>10.1021/acsnano.5b02676</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2015-10, Vol.9 (10), p.9772-9782 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1370941 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | bio-inspired charge transport defects electrodes - solar energy transfer fluorescence intermittency INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY materials and chemistry by design nanocrystal interactions NANOSCIENCE AND NANOTECHNOLOGY optics silicon nanocrystals solar (fuels) solar (photovoltaic) solid state lighting synthesis (novel materials) synthesis (scalable processing) |
title | Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Luminescent%20Stability%20through%20Particle%20Interactions%20in%20Silicon%20Nanocrystal%20Aggregates&rft.jtitle=ACS%20nano&rft.au=Miller,%20Joseph%20B&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Advanced%20Solar%20Photophysics%20(CASP)&rft.date=2015-10-27&rft.volume=9&rft.issue=10&rft.spage=9772&rft.epage=9782&rft.pages=9772-9782&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b02676&rft_dat=%3Cproquest_osti_%3E1727986966%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-4a2b0867dc1a8c49af29fb4aa3c49d7cbd6d7dceaea5059ac0e2e0d1fbbf38853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727986966&rft_id=info:pmid/26348831&rfr_iscdi=true |