Loading…

Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode

Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity an...

Full description

Saved in:
Bibliographic Details
Published in:Electrocatalysis 2017-07, Vol.8 (4), p.366-374
Main Authors: Kocha, Shyam S., Shinozaki, Kazuma, Zack, Jason W., Myers, Deborah J., Kariuki, Nancy N., Nowicki, Tammi, Stamenkovic, Vojislav, Kang, Yijin, Li, Dongguo, Papageorgopoulos, Dimitrios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for the imminent commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo—TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. The ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs). Reproducibility of ORR mass activity for three Pt/C catalysts between three laboratories using best practices and standardized measurement protocols. Graphical Abstract
ISSN:1868-2529
1868-5994
DOI:10.1007/s12678-017-0378-6