Loading…
Toward Highly Efficient Electrocatalyst for Li–O2 Batteries Using Biphasic N‑Doping Cobalt@Graphene Multiple-Capsule Heterostructures
For the promotion of lithium–oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally...
Saved in:
Published in: | Nano letters 2017-05, Vol.17 (5), p.2959-2966 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the promotion of lithium–oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium–oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.7b00207 |