Loading…

Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR

The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrometeorology 2017-09, Vol.18 (9), p.2313-2330
Main Authors: Nguyen, Phu, Thorstensen, Andrea, Sorooshian, Soroosh, Zhu, Qian, Tran, Hoang, Ashouri, Hamed, Miao, Chiyuan, Hsu, Kuolin, Gao, Xiaogang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903
cites cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903
container_end_page 2330
container_issue 9
container_start_page 2313
container_title Journal of hydrometeorology
container_volume 18
creator Nguyen, Phu
Thorstensen, Andrea
Sorooshian, Soroosh
Zhu, Qian
Tran, Hoang
Ashouri, Hamed
Miao, Chiyuan
Hsu, Kuolin
Gao, Xiaogang
description The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
doi_str_mv 10.1175/JHM-D-16-0201.1
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26392088</jstor_id><sourcerecordid>26392088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</originalsourceid><addsrcrecordid>eNo9kM9PwjAYhhujiYiePZks3gtft_6aNzJQMIAEJfHWdF2rJbiRtZr43wuZ4fS9yfe87-FB6JbAgBDBhs_TBR5jwjGkQAbkDPUISxkWjJLzU2bvl-gqhC0A0JzIHnqY_Ojdt46-qZPGJcVitmLJoqnsLlm11vi9j91zE3z9kawm69fZaLnExXh9jS6c3gV783_7aPM4eSumeP7yNCtGc2yyjERMK8I1q2QuHStdBdTQUgqtK01TAwIo44ZpcJozyTllUIqSGg7WAbcmh6yP7rvdJkSvgvHRmk_T1LU1UZFMMBDpARp2kGmbEFrr1L71X7r9VQTU0Y86-FFjRbg6-jn0-uiua2xDbNoTnvIsT0HK7A8cXV-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</creator><creatorcontrib>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</creatorcontrib><description>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-16-0201.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><ispartof>Journal of hydrometeorology, 2017-09, Vol.18 (9), p.2313-2330</ispartof><rights>2017 American Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</citedby><cites>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26392088$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26392088$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1375072$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Thorstensen, Andrea</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Tran, Hoang</creatorcontrib><creatorcontrib>Ashouri, Hamed</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Gao, Xiaogang</creatorcontrib><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><title>Journal of hydrometeorology</title><description>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</description><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAYhhujiYiePZks3gtft_6aNzJQMIAEJfHWdF2rJbiRtZr43wuZ4fS9yfe87-FB6JbAgBDBhs_TBR5jwjGkQAbkDPUISxkWjJLzU2bvl-gqhC0A0JzIHnqY_Ojdt46-qZPGJcVitmLJoqnsLlm11vi9j91zE3z9kawm69fZaLnExXh9jS6c3gV783_7aPM4eSumeP7yNCtGc2yyjERMK8I1q2QuHStdBdTQUgqtK01TAwIo44ZpcJozyTllUIqSGg7WAbcmh6yP7rvdJkSvgvHRmk_T1LU1UZFMMBDpARp2kGmbEFrr1L71X7r9VQTU0Y86-FFjRbg6-jn0-uiua2xDbNoTnvIsT0HK7A8cXV-Y</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Nguyen, Phu</creator><creator>Thorstensen, Andrea</creator><creator>Sorooshian, Soroosh</creator><creator>Zhu, Qian</creator><creator>Tran, Hoang</creator><creator>Ashouri, Hamed</creator><creator>Miao, Chiyuan</creator><creator>Hsu, Kuolin</creator><creator>Gao, Xiaogang</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170901</creationdate><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><author>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Thorstensen, Andrea</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Tran, Hoang</creatorcontrib><creatorcontrib>Ashouri, Hamed</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Gao, Xiaogang</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Phu</au><au>Thorstensen, Andrea</au><au>Sorooshian, Soroosh</au><au>Zhu, Qian</au><au>Tran, Hoang</au><au>Ashouri, Hamed</au><au>Miao, Chiyuan</au><au>Hsu, Kuolin</au><au>Gao, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>2313</spage><epage>2330</epage><pages>2313-2330</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-16-0201.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2017-09, Vol.18 (9), p.2313-2330
issn 1525-755X
1525-7541
language eng
recordid cdi_osti_scitechconnect_1375072
source JSTOR Archival Journals and Primary Sources Collection
title Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20CMIP5%20Model%20Precipitation%20Using%20PERSIANN-CDR&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Nguyen,%20Phu&rft.date=2017-09-01&rft.volume=18&rft.issue=9&rft.spage=2313&rft.epage=2330&rft.pages=2313-2330&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-16-0201.1&rft_dat=%3Cjstor_osti_%3E26392088%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26392088&rfr_iscdi=true