Loading…
Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR
The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of...
Saved in:
Published in: | Journal of hydrometeorology 2017-09, Vol.18 (9), p.2313-2330 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903 |
container_end_page | 2330 |
container_issue | 9 |
container_start_page | 2313 |
container_title | Journal of hydrometeorology |
container_volume | 18 |
creator | Nguyen, Phu Thorstensen, Andrea Sorooshian, Soroosh Zhu, Qian Tran, Hoang Ashouri, Hamed Miao, Chiyuan Hsu, Kuolin Gao, Xiaogang |
description | The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest. |
doi_str_mv | 10.1175/JHM-D-16-0201.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26392088</jstor_id><sourcerecordid>26392088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</originalsourceid><addsrcrecordid>eNo9kM9PwjAYhhujiYiePZks3gtft_6aNzJQMIAEJfHWdF2rJbiRtZr43wuZ4fS9yfe87-FB6JbAgBDBhs_TBR5jwjGkQAbkDPUISxkWjJLzU2bvl-gqhC0A0JzIHnqY_Ojdt46-qZPGJcVitmLJoqnsLlm11vi9j91zE3z9kawm69fZaLnExXh9jS6c3gV783_7aPM4eSumeP7yNCtGc2yyjERMK8I1q2QuHStdBdTQUgqtK01TAwIo44ZpcJozyTllUIqSGg7WAbcmh6yP7rvdJkSvgvHRmk_T1LU1UZFMMBDpARp2kGmbEFrr1L71X7r9VQTU0Y86-FFjRbg6-jn0-uiua2xDbNoTnvIsT0HK7A8cXV-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</creator><creatorcontrib>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</creatorcontrib><description>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-16-0201.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><ispartof>Journal of hydrometeorology, 2017-09, Vol.18 (9), p.2313-2330</ispartof><rights>2017 American Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</citedby><cites>FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26392088$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26392088$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1375072$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Thorstensen, Andrea</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Tran, Hoang</creatorcontrib><creatorcontrib>Ashouri, Hamed</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Gao, Xiaogang</creatorcontrib><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><title>Journal of hydrometeorology</title><description>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</description><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAYhhujiYiePZks3gtft_6aNzJQMIAEJfHWdF2rJbiRtZr43wuZ4fS9yfe87-FB6JbAgBDBhs_TBR5jwjGkQAbkDPUISxkWjJLzU2bvl-gqhC0A0JzIHnqY_Ojdt46-qZPGJcVitmLJoqnsLlm11vi9j91zE3z9kawm69fZaLnExXh9jS6c3gV783_7aPM4eSumeP7yNCtGc2yyjERMK8I1q2QuHStdBdTQUgqtK01TAwIo44ZpcJozyTllUIqSGg7WAbcmh6yP7rvdJkSvgvHRmk_T1LU1UZFMMBDpARp2kGmbEFrr1L71X7r9VQTU0Y86-FFjRbg6-jn0-uiua2xDbNoTnvIsT0HK7A8cXV-Y</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Nguyen, Phu</creator><creator>Thorstensen, Andrea</creator><creator>Sorooshian, Soroosh</creator><creator>Zhu, Qian</creator><creator>Tran, Hoang</creator><creator>Ashouri, Hamed</creator><creator>Miao, Chiyuan</creator><creator>Hsu, Kuolin</creator><creator>Gao, Xiaogang</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170901</creationdate><title>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</title><author>Nguyen, Phu ; Thorstensen, Andrea ; Sorooshian, Soroosh ; Zhu, Qian ; Tran, Hoang ; Ashouri, Hamed ; Miao, Chiyuan ; Hsu, Kuolin ; Gao, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Thorstensen, Andrea</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Tran, Hoang</creatorcontrib><creatorcontrib>Ashouri, Hamed</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Gao, Xiaogang</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Phu</au><au>Thorstensen, Andrea</au><au>Sorooshian, Soroosh</au><au>Zhu, Qian</au><au>Tran, Hoang</au><au>Ashouri, Hamed</au><au>Miao, Chiyuan</au><au>Hsu, Kuolin</au><au>Gao, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>2313</spage><epage>2330</epage><pages>2313-2330</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-16-0201.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2017-09, Vol.18 (9), p.2313-2330 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_osti_scitechconnect_1375072 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | Evaluation of CMIP5 Model Precipitation Using PERSIANN-CDR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20CMIP5%20Model%20Precipitation%20Using%20PERSIANN-CDR&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Nguyen,%20Phu&rft.date=2017-09-01&rft.volume=18&rft.issue=9&rft.spage=2313&rft.epage=2330&rft.pages=2313-2330&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-16-0201.1&rft_dat=%3Cjstor_osti_%3E26392088%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-4d16a5d898f5bfd04c4b87aada42c070456c5a0fa65866450b7b4c60ef06ec903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26392088&rfr_iscdi=true |