Loading…
Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present...
Saved in:
Published in: | Journal of computational physics 2017-04, Vol.335 (C), p.426-443 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43 |
container_end_page | 443 |
container_issue | C |
container_start_page | 426 |
container_title | Journal of computational physics |
container_volume | 335 |
creator | Zhang, Gaigong Lin, Lin Hu, Wei Yang, Chao Pask, John E. |
description | Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature. |
doi_str_mv | 10.1016/j.jcp.2016.12.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1379809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116307203</els_id><sourcerecordid>2064413010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</originalsourceid><addsrcrecordid>eNp9kUFu2zAQRYmiAeq6OUB3RLuNVI5kW2S7CoImNRogi2RP0KMRTEUiXZJy4F3v0Bv0aD1JKbjrrkhw3v_4w8_YexAlCNh86sseD2WVryVUpVhXr9gChBJF1cDmNVsIUUGhlII37G2MvRBCrldywX5ft-aQ7JH44NEMfGeijTxS4p0P_Lvfuz8_fz3uzchbctGmE-8mh8l6l-G0Jx9O3DpueGsjepesm_wU-Z0ZKDznQRfMSC8-PPPt9jO_9QHpih_tLpjZ44ob1_LRD4TTYAJvT86MFiPPUeaXmYnv2EVnhkiX_84le7r9-nTzrbh_uNveXN8XWKt1KmSLwoCqharXEhokIcE0plYdSpISdq0h2XUIedxAQ2gEgtoRCkCFq3rJPpxtfUxWR7SJcJ9XcoRJQ90omZ2X7OMZOgT_Y6KYdO-nkP8i6kpsViuoBYhMwZnC4GMM1OlDsKMJJw1Cz3XpXue69FyXhkrnurLmy1lDecWjpTBHIIfU2jAnaL39j_ov-BWhMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413010</pqid></control><display><type>article</type><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E.</creator><creatorcontrib>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.12.052</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptive local basis set ; Adaptive systems ; Alloy systems ; Aluminum base alloys ; ATOMIC AND MOLECULAR PHYSICS ; Atomic properties ; Atomic structure ; Basis functions ; Computational physics ; Computer simulation ; Convergence ; Density functional theory ; Dependence ; Discontinuous Galerkin ; Electronic structure ; Galerkin method ; Geometry ; Hellmann–Feynman force ; Kohn–Sham density functional theory ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Molecular chains ; Molecular dynamics ; Molecular structure ; Numerical analysis ; Physics - Condensed matter physics ; Pulay force ; Silicon ; Studies</subject><ispartof>Journal of computational physics, 2017-04, Vol.335 (C), p.426-443</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</citedby><cites>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</cites><orcidid>0000-0001-9629-2121 ; 0000000196292121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1379809$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Gaigong</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Pask, John E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><title>Journal of computational physics</title><description>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</description><subject>Adaptive local basis set</subject><subject>Adaptive systems</subject><subject>Alloy systems</subject><subject>Aluminum base alloys</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Basis functions</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>Dependence</subject><subject>Discontinuous Galerkin</subject><subject>Electronic structure</subject><subject>Galerkin method</subject><subject>Geometry</subject><subject>Hellmann–Feynman force</subject><subject>Kohn–Sham density functional theory</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Numerical analysis</subject><subject>Physics - Condensed matter physics</subject><subject>Pulay force</subject><subject>Silicon</subject><subject>Studies</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu2zAQRYmiAeq6OUB3RLuNVI5kW2S7CoImNRogi2RP0KMRTEUiXZJy4F3v0Bv0aD1JKbjrrkhw3v_4w8_YexAlCNh86sseD2WVryVUpVhXr9gChBJF1cDmNVsIUUGhlII37G2MvRBCrldywX5ft-aQ7JH44NEMfGeijTxS4p0P_Lvfuz8_fz3uzchbctGmE-8mh8l6l-G0Jx9O3DpueGsjepesm_wU-Z0ZKDznQRfMSC8-PPPt9jO_9QHpih_tLpjZ44ob1_LRD4TTYAJvT86MFiPPUeaXmYnv2EVnhkiX_84le7r9-nTzrbh_uNveXN8XWKt1KmSLwoCqharXEhokIcE0plYdSpISdq0h2XUIedxAQ2gEgtoRCkCFq3rJPpxtfUxWR7SJcJ9XcoRJQ90omZ2X7OMZOgT_Y6KYdO-nkP8i6kpsViuoBYhMwZnC4GMM1OlDsKMJJw1Cz3XpXue69FyXhkrnurLmy1lDecWjpTBHIIfU2jAnaL39j_ov-BWhMg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Zhang, Gaigong</creator><creator>Lin, Lin</creator><creator>Hu, Wei</creator><creator>Yang, Chao</creator><creator>Pask, John E.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000000196292121</orcidid></search><sort><creationdate>20170415</creationdate><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><author>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive local basis set</topic><topic>Adaptive systems</topic><topic>Alloy systems</topic><topic>Aluminum base alloys</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Basis functions</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>Dependence</topic><topic>Discontinuous Galerkin</topic><topic>Electronic structure</topic><topic>Galerkin method</topic><topic>Geometry</topic><topic>Hellmann–Feynman force</topic><topic>Kohn–Sham density functional theory</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Numerical analysis</topic><topic>Physics - Condensed matter physics</topic><topic>Pulay force</topic><topic>Silicon</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gaigong</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Pask, John E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gaigong</au><au>Lin, Lin</au><au>Hu, Wei</au><au>Yang, Chao</au><au>Pask, John E.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><issue>C</issue><spage>426</spage><epage>443</epage><pages>426-443</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.12.052</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000000196292121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-04, Vol.335 (C), p.426-443 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1379809 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Adaptive local basis set Adaptive systems Alloy systems Aluminum base alloys ATOMIC AND MOLECULAR PHYSICS Atomic properties Atomic structure Basis functions Computational physics Computer simulation Convergence Density functional theory Dependence Discontinuous Galerkin Electronic structure Galerkin method Geometry Hellmann–Feynman force Kohn–Sham density functional theory Mathematical analysis MATHEMATICS AND COMPUTING Molecular chains Molecular dynamics Molecular structure Numerical analysis Physics - Condensed matter physics Pulay force Silicon Studies |
title | Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20local%20basis%20set%20for%20Kohn%E2%80%93Sham%20density%20functional%20theory%20in%20a%20discontinuous%20Galerkin%20framework%20II:%20Force,%20vibration,%20and%20molecular%20dynamics%20calculations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zhang,%20Gaigong&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-15&rft.volume=335&rft.issue=C&rft.spage=426&rft.epage=443&rft.pages=426-443&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.12.052&rft_dat=%3Cproquest_osti_%3E2064413010%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2064413010&rft_id=info:pmid/&rfr_iscdi=true |