Loading…

Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2017-04, Vol.335 (C), p.426-443
Main Authors: Zhang, Gaigong, Lin, Lin, Hu, Wei, Yang, Chao, Pask, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43
cites cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43
container_end_page 443
container_issue C
container_start_page 426
container_title Journal of computational physics
container_volume 335
creator Zhang, Gaigong
Lin, Lin
Hu, Wei
Yang, Chao
Pask, John E.
description Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
doi_str_mv 10.1016/j.jcp.2016.12.052
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1379809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116307203</els_id><sourcerecordid>2064413010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</originalsourceid><addsrcrecordid>eNp9kUFu2zAQRYmiAeq6OUB3RLuNVI5kW2S7CoImNRogi2RP0KMRTEUiXZJy4F3v0Bv0aD1JKbjrrkhw3v_4w8_YexAlCNh86sseD2WVryVUpVhXr9gChBJF1cDmNVsIUUGhlII37G2MvRBCrldywX5ft-aQ7JH44NEMfGeijTxS4p0P_Lvfuz8_fz3uzchbctGmE-8mh8l6l-G0Jx9O3DpueGsjepesm_wU-Z0ZKDznQRfMSC8-PPPt9jO_9QHpih_tLpjZ44ob1_LRD4TTYAJvT86MFiPPUeaXmYnv2EVnhkiX_84le7r9-nTzrbh_uNveXN8XWKt1KmSLwoCqharXEhokIcE0plYdSpISdq0h2XUIedxAQ2gEgtoRCkCFq3rJPpxtfUxWR7SJcJ9XcoRJQ90omZ2X7OMZOgT_Y6KYdO-nkP8i6kpsViuoBYhMwZnC4GMM1OlDsKMJJw1Cz3XpXue69FyXhkrnurLmy1lDecWjpTBHIIfU2jAnaL39j_ov-BWhMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413010</pqid></control><display><type>article</type><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E.</creator><creatorcontrib>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.12.052</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptive local basis set ; Adaptive systems ; Alloy systems ; Aluminum base alloys ; ATOMIC AND MOLECULAR PHYSICS ; Atomic properties ; Atomic structure ; Basis functions ; Computational physics ; Computer simulation ; Convergence ; Density functional theory ; Dependence ; Discontinuous Galerkin ; Electronic structure ; Galerkin method ; Geometry ; Hellmann–Feynman force ; Kohn–Sham density functional theory ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Molecular chains ; Molecular dynamics ; Molecular structure ; Numerical analysis ; Physics - Condensed matter physics ; Pulay force ; Silicon ; Studies</subject><ispartof>Journal of computational physics, 2017-04, Vol.335 (C), p.426-443</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</citedby><cites>FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</cites><orcidid>0000-0001-9629-2121 ; 0000000196292121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1379809$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Gaigong</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Pask, John E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><title>Journal of computational physics</title><description>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</description><subject>Adaptive local basis set</subject><subject>Adaptive systems</subject><subject>Alloy systems</subject><subject>Aluminum base alloys</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Basis functions</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>Dependence</subject><subject>Discontinuous Galerkin</subject><subject>Electronic structure</subject><subject>Galerkin method</subject><subject>Geometry</subject><subject>Hellmann–Feynman force</subject><subject>Kohn–Sham density functional theory</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Numerical analysis</subject><subject>Physics - Condensed matter physics</subject><subject>Pulay force</subject><subject>Silicon</subject><subject>Studies</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu2zAQRYmiAeq6OUB3RLuNVI5kW2S7CoImNRogi2RP0KMRTEUiXZJy4F3v0Bv0aD1JKbjrrkhw3v_4w8_YexAlCNh86sseD2WVryVUpVhXr9gChBJF1cDmNVsIUUGhlII37G2MvRBCrldywX5ft-aQ7JH44NEMfGeijTxS4p0P_Lvfuz8_fz3uzchbctGmE-8mh8l6l-G0Jx9O3DpueGsjepesm_wU-Z0ZKDznQRfMSC8-PPPt9jO_9QHpih_tLpjZ44ob1_LRD4TTYAJvT86MFiPPUeaXmYnv2EVnhkiX_84le7r9-nTzrbh_uNveXN8XWKt1KmSLwoCqharXEhokIcE0plYdSpISdq0h2XUIedxAQ2gEgtoRCkCFq3rJPpxtfUxWR7SJcJ9XcoRJQ90omZ2X7OMZOgT_Y6KYdO-nkP8i6kpsViuoBYhMwZnC4GMM1OlDsKMJJw1Cz3XpXue69FyXhkrnurLmy1lDecWjpTBHIIfU2jAnaL39j_ov-BWhMg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Zhang, Gaigong</creator><creator>Lin, Lin</creator><creator>Hu, Wei</creator><creator>Yang, Chao</creator><creator>Pask, John E.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000000196292121</orcidid></search><sort><creationdate>20170415</creationdate><title>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</title><author>Zhang, Gaigong ; Lin, Lin ; Hu, Wei ; Yang, Chao ; Pask, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive local basis set</topic><topic>Adaptive systems</topic><topic>Alloy systems</topic><topic>Aluminum base alloys</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Basis functions</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>Dependence</topic><topic>Discontinuous Galerkin</topic><topic>Electronic structure</topic><topic>Galerkin method</topic><topic>Geometry</topic><topic>Hellmann–Feynman force</topic><topic>Kohn–Sham density functional theory</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Numerical analysis</topic><topic>Physics - Condensed matter physics</topic><topic>Pulay force</topic><topic>Silicon</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gaigong</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Pask, John E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gaigong</au><au>Lin, Lin</au><au>Hu, Wei</au><au>Yang, Chao</au><au>Pask, John E.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><issue>C</issue><spage>426</spage><epage>443</epage><pages>426-443</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.12.052</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9629-2121</orcidid><orcidid>https://orcid.org/0000000196292121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-04, Vol.335 (C), p.426-443
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1379809
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Adaptive local basis set
Adaptive systems
Alloy systems
Aluminum base alloys
ATOMIC AND MOLECULAR PHYSICS
Atomic properties
Atomic structure
Basis functions
Computational physics
Computer simulation
Convergence
Density functional theory
Dependence
Discontinuous Galerkin
Electronic structure
Galerkin method
Geometry
Hellmann–Feynman force
Kohn–Sham density functional theory
Mathematical analysis
MATHEMATICS AND COMPUTING
Molecular chains
Molecular dynamics
Molecular structure
Numerical analysis
Physics - Condensed matter physics
Pulay force
Silicon
Studies
title Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20local%20basis%20set%20for%20Kohn%E2%80%93Sham%20density%20functional%20theory%20in%20a%20discontinuous%20Galerkin%20framework%20II:%20Force,%20vibration,%20and%20molecular%20dynamics%20calculations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zhang,%20Gaigong&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-15&rft.volume=335&rft.issue=C&rft.spage=426&rft.epage=443&rft.pages=426-443&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.12.052&rft_dat=%3Cproquest_osti_%3E2064413010%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-8dc0a1930935817ce081a7a39fc8e881bdae8ffc1358717eca0c19bec01c9c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2064413010&rft_id=info:pmid/&rfr_iscdi=true