Loading…
Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity
The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) a...
Saved in:
Published in: | Journal of the American Chemical Society 2013-01, Vol.135 (2), p.598-601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113 |
---|---|
cites | cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113 |
container_end_page | 601 |
container_issue | 2 |
container_start_page | 598 |
container_title | Journal of the American Chemical Society |
container_volume | 135 |
creator | Hughes, James T Bennett, Thomas D Cheetham, Anthony K Navrotsky, Alexandra |
description | The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials. |
doi_str_mv | 10.1021/ja311237m |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1385822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273582059</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgipvTg19AiiDooZo_bdMcZTgdDPQwPXgJWfrWZbbNTDJkfnozNnfyFAI_Ht7nQeic4FuCKblbKEYIZbw9QH2SU5zmhBaHqI8xpikvC9ZDJ94v4jejJTlGPcoox4zgPhpN5-Baq-fQGh_cOrF18g62McHoZNyaSv3YRgVIRk618G3dp9-QN-XWpvtIXqyz3oT1KTqqVePhbPcO0OvoYTp8SifPj-Ph_SRVGS5DWguugHBcl7SAMsOgC8q5FhSYKMgM10WtcxFPE1qUFYiZgKIC4HWecRCEsAG63OZaH4z02gTQc227DnSQhJV5SWlE11u0dPZrBT7I2E1D06gO7MpLQjmLEOci0pst1bGHd1DLpTNtLCcJlptt5X7baC92satZC9Ve_o0ZwdUWKO3lwq5cF6f4J-gXqhV_Qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273582059</pqid></control><display><type>article</type><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra</creator><creatorcontrib>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra ; Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><description>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja311237m</identifier><identifier>PMID: 23270310</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2013-01, Vol.135 (2), p.598-601</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</citedby><cites>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23270310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1385822$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, James T</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</description><subject>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LwzAYBvAgipvTg19AiiDooZo_bdMcZTgdDPQwPXgJWfrWZbbNTDJkfnozNnfyFAI_Ht7nQeic4FuCKblbKEYIZbw9QH2SU5zmhBaHqI8xpikvC9ZDJ94v4jejJTlGPcoox4zgPhpN5-Baq-fQGh_cOrF18g62McHoZNyaSv3YRgVIRk618G3dp9-QN-XWpvtIXqyz3oT1KTqqVePhbPcO0OvoYTp8SifPj-Ph_SRVGS5DWguugHBcl7SAMsOgC8q5FhSYKMgM10WtcxFPE1qUFYiZgKIC4HWecRCEsAG63OZaH4z02gTQc227DnSQhJV5SWlE11u0dPZrBT7I2E1D06gO7MpLQjmLEOci0pst1bGHd1DLpTNtLCcJlptt5X7baC92satZC9Ve_o0ZwdUWKO3lwq5cF6f4J-gXqhV_Qg</recordid><startdate>20130116</startdate><enddate>20130116</enddate><creator>Hughes, James T</creator><creator>Bennett, Thomas D</creator><creator>Cheetham, Anthony K</creator><creator>Navrotsky, Alexandra</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130116</creationdate><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><author>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, James T</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, James T</au><au>Bennett, Thomas D</au><au>Cheetham, Anthony K</au><au>Navrotsky, Alexandra</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-01-16</date><risdate>2013</risdate><volume>135</volume><issue>2</issue><spage>598</spage><epage>601</epage><pages>598-601</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23270310</pmid><doi>10.1021/ja311237m</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2013-01, Vol.135 (2), p.598-601 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1385822 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) |
title | Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemistry%20of%20Zeolitic%20Imidazolate%20Frameworks%20of%20Varying%20Porosity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hughes,%20James%20T&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Materials%20Science%20of%20Actinides%20(MSA)&rft.date=2013-01-16&rft.volume=135&rft.issue=2&rft.spage=598&rft.epage=601&rft.pages=598-601&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja311237m&rft_dat=%3Cproquest_osti_%3E1273582059%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273582059&rft_id=info:pmid/23270310&rfr_iscdi=true |