Loading…

Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity

The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-01, Vol.135 (2), p.598-601
Main Authors: Hughes, James T, Bennett, Thomas D, Cheetham, Anthony K, Navrotsky, Alexandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113
cites cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113
container_end_page 601
container_issue 2
container_start_page 598
container_title Journal of the American Chemical Society
container_volume 135
creator Hughes, James T
Bennett, Thomas D
Cheetham, Anthony K
Navrotsky, Alexandra
description The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.
doi_str_mv 10.1021/ja311237m
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1385822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273582059</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgipvTg19AiiDooZo_bdMcZTgdDPQwPXgJWfrWZbbNTDJkfnozNnfyFAI_Ht7nQeic4FuCKblbKEYIZbw9QH2SU5zmhBaHqI8xpikvC9ZDJ94v4jejJTlGPcoox4zgPhpN5-Baq-fQGh_cOrF18g62McHoZNyaSv3YRgVIRk618G3dp9-QN-XWpvtIXqyz3oT1KTqqVePhbPcO0OvoYTp8SifPj-Ph_SRVGS5DWguugHBcl7SAMsOgC8q5FhSYKMgM10WtcxFPE1qUFYiZgKIC4HWecRCEsAG63OZaH4z02gTQc227DnSQhJV5SWlE11u0dPZrBT7I2E1D06gO7MpLQjmLEOci0pst1bGHd1DLpTNtLCcJlptt5X7baC92satZC9Ve_o0ZwdUWKO3lwq5cF6f4J-gXqhV_Qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273582059</pqid></control><display><type>article</type><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra</creator><creatorcontrib>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra ; Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><description>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja311237m</identifier><identifier>PMID: 23270310</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2013-01, Vol.135 (2), p.598-601</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</citedby><cites>FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23270310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1385822$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, James T</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</description><subject>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LwzAYBvAgipvTg19AiiDooZo_bdMcZTgdDPQwPXgJWfrWZbbNTDJkfnozNnfyFAI_Ht7nQeic4FuCKblbKEYIZbw9QH2SU5zmhBaHqI8xpikvC9ZDJ94v4jejJTlGPcoox4zgPhpN5-Baq-fQGh_cOrF18g62McHoZNyaSv3YRgVIRk618G3dp9-QN-XWpvtIXqyz3oT1KTqqVePhbPcO0OvoYTp8SifPj-Ph_SRVGS5DWguugHBcl7SAMsOgC8q5FhSYKMgM10WtcxFPE1qUFYiZgKIC4HWecRCEsAG63OZaH4z02gTQc227DnSQhJV5SWlE11u0dPZrBT7I2E1D06gO7MpLQjmLEOci0pst1bGHd1DLpTNtLCcJlptt5X7baC92satZC9Ve_o0ZwdUWKO3lwq5cF6f4J-gXqhV_Qg</recordid><startdate>20130116</startdate><enddate>20130116</enddate><creator>Hughes, James T</creator><creator>Bennett, Thomas D</creator><creator>Cheetham, Anthony K</creator><creator>Navrotsky, Alexandra</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130116</creationdate><title>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</title><author>Hughes, James T ; Bennett, Thomas D ; Cheetham, Anthony K ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, James T</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, James T</au><au>Bennett, Thomas D</au><au>Cheetham, Anthony K</au><au>Navrotsky, Alexandra</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-01-16</date><risdate>2013</risdate><volume>135</volume><issue>2</issue><spage>598</spage><epage>601</epage><pages>598-601</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The first thermochemical analysis by room-temperature aqueous solution calorimetry of a series of zeolite imidazolate frameworks (ZIFs) has been completed. The enthalpies of formation of the evacuated ZIFsZIF-zni, ZIF-1, ZIF-4, CoZIF-4, ZIF-7, and ZIF-8along with as-synthesized ZIF-4 (ZIF-4·DMF) and ball-milling amorphized ZIF-4 (a mZIF-4) were measured with respect to dense components: metal oxide (ZnO or CoO), the corresponding imidazole linker, and N,N dimethylformamide (DMF) in the case of ZIF-4·DMF. Enthalpies of formation of ZIFs from these components at 298 K are exothermic, but the ZIFs are metastable energetically with respect to hypothetical dense components in which zinc is bonded to nitrogen rather than oxygen. These enthalpic destabilizations increase with increasing porosity and span a narrow range from 13.0 to 27.1 kJ/mol, while the molar volumes extend from 135.9 to 248.8 cm3/mol; thus, almost doubling the molar volume results in only a modest energetic destabilization. The experimental results are supported by DFT calculations. The series of ZIFs studied tie in with previously studied MOF-5, creating a broader trend that mirrors a similar pattern by porous inorganic oxides, zeolites, zeotypes, and mesoporous silicas. These findings suggest that no immediate thermodynamic barrier precludes the further development of highly porous materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23270310</pmid><doi>10.1021/ja311237m</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-01, Vol.135 (2), p.598-601
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1385822
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)
title Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemistry%20of%20Zeolitic%20Imidazolate%20Frameworks%20of%20Varying%20Porosity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hughes,%20James%20T&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Materials%20Science%20of%20Actinides%20(MSA)&rft.date=2013-01-16&rft.volume=135&rft.issue=2&rft.spage=598&rft.epage=601&rft.pages=598-601&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja311237m&rft_dat=%3Cproquest_osti_%3E1273582059%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-f97ae170f826e840ec6277c92e3961b0f6fc597039c98de9b9e6dee7f547e9113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273582059&rft_id=info:pmid/23270310&rfr_iscdi=true