Loading…

A carbon-based 3D current collector with surface protection for Li metal anode

Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2017-04, Vol.10 (4), p.1356-1365
Main Authors: Zhang, Ying, Liu, Boyang, Hitz, Emily, Luo, Wei, Yao, Yonggang, Li, Yiju, Dai, Jiaqi, Chen, Chaoji, Wang, Yanbin, Yang, Chunpeng, Li, Hongbian, Hu, Liangbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153
cites cdi_FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153
container_end_page 1365
container_issue 4
container_start_page 1356
container_title Nano research
container_volume 10
creator Zhang, Ying
Liu, Boyang
Hitz, Emily
Luo, Wei
Yao, Yonggang
Li, Yiju
Dai, Jiaqi
Chen, Chaoji
Wang, Yanbin
Yang, Chunpeng
Li, Hongbian
Hu, Liangbing
description Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal A1203 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm^-2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm^-2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.
doi_str_mv 10.1007/s12274-017-1461-2
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1388492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672150577</cqvip_id><sourcerecordid>2001476267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153</originalsourceid><addsrcrecordid>eNqFkU1P5SAUhpuJJuPXD5gdmdm4qXJOaYGl8WM0udGNrgnlnnprekGhjfHfy03vjIkLhQUEnvecF96i-AX8BDiXpwkQpSg5yBJEAyX-KPZAa1XyPHb-7QHFz2I_pSfOGwSh9orbM-ZsbIMvW5toyaoL5qYYyY_MhWEgN4bIXvtxxdIUO-uIPccw5uM-eNblu0XP1jTagVkflnRY7HZ2SHS0XQ-Kh6vL-_PrcnH39-b8bFE6UTVj6VpLlZO1dRKJGk6Sa4G2E0K4bBKXXSuVlKDEUrYVcNdYrmuVJ5LooK4Oit9z3ZDG3iTXZ0srF7zPzgxUSgmNGTqeoWz5ZaI0mnWfHA2D9RSmZEBzgQgaxPeo0qAUarlp_ecT-hSm6PNrDXIOQjbYyEzBTLkYUorUmefYr218M8DNJjEzJ2ZyYmaTmNn4xVmTMusfKX5U_kq0_Qm3Cv7xJev-d2okQs1rKat3LxSg4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476267</pqid></control><display><type>article</type><title>A carbon-based 3D current collector with surface protection for Li metal anode</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Ying ; Liu, Boyang ; Hitz, Emily ; Luo, Wei ; Yao, Yonggang ; Li, Yiju ; Dai, Jiaqi ; Chen, Chaoji ; Wang, Yanbin ; Yang, Chunpeng ; Li, Hongbian ; Hu, Liangbing</creator><creatorcontrib>Zhang, Ying ; Liu, Boyang ; Hitz, Emily ; Luo, Wei ; Yao, Yonggang ; Li, Yiju ; Dai, Jiaqi ; Chen, Chaoji ; Wang, Yanbin ; Yang, Chunpeng ; Li, Hongbian ; Hu, Liangbing ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal A1203 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm^-2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm^-2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1461-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Accumulators ; Aluminum oxide ; Anodes ; Anodic protection ; Atomic layer deposition ; Atomic layer epitaxy ; Atomic/Molecular Structure and Spectra ; Batteries ; bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Biomedicine ; Biotechnology ; Carbon nanotubes ; Charge distribution ; Chemistry and Materials Science ; Collectors ; Condensed Matter Physics ; Cycles ; Dendrites ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Electrolytic cells ; Hazards ; Interface stability ; Lithium ; Materials Science ; Mechanical properties ; Metals ; Nanotechnology ; Rechargeable batteries ; Redox potential ; Research Article ; Solid electrolytes ; Specific capacity</subject><ispartof>Nano research, 2017-04, Vol.10 (4), p.1356-1365</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153</citedby><cites>FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1388492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Hitz, Emily</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Li, Yiju</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Chen, Chaoji</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Yang, Chunpeng</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>A carbon-based 3D current collector with surface protection for Li metal anode</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal A1203 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm^-2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm^-2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.</description><subject>Accumulators</subject><subject>Aluminum oxide</subject><subject>Anodes</subject><subject>Anodic protection</subject><subject>Atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon nanotubes</subject><subject>Charge distribution</subject><subject>Chemistry and Materials Science</subject><subject>Collectors</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Dendrites</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Hazards</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Research Article</subject><subject>Solid electrolytes</subject><subject>Specific capacity</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P5SAUhpuJJuPXD5gdmdm4qXJOaYGl8WM0udGNrgnlnnprekGhjfHfy03vjIkLhQUEnvecF96i-AX8BDiXpwkQpSg5yBJEAyX-KPZAa1XyPHb-7QHFz2I_pSfOGwSh9orbM-ZsbIMvW5toyaoL5qYYyY_MhWEgN4bIXvtxxdIUO-uIPccw5uM-eNblu0XP1jTagVkflnRY7HZ2SHS0XQ-Kh6vL-_PrcnH39-b8bFE6UTVj6VpLlZO1dRKJGk6Sa4G2E0K4bBKXXSuVlKDEUrYVcNdYrmuVJ5LooK4Oit9z3ZDG3iTXZ0srF7zPzgxUSgmNGTqeoWz5ZaI0mnWfHA2D9RSmZEBzgQgaxPeo0qAUarlp_ecT-hSm6PNrDXIOQjbYyEzBTLkYUorUmefYr218M8DNJjEzJ2ZyYmaTmNn4xVmTMusfKX5U_kq0_Qm3Cv7xJev-d2okQs1rKat3LxSg4A</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Zhang, Ying</creator><creator>Liu, Boyang</creator><creator>Hitz, Emily</creator><creator>Luo, Wei</creator><creator>Yao, Yonggang</creator><creator>Li, Yiju</creator><creator>Dai, Jiaqi</creator><creator>Chen, Chaoji</creator><creator>Wang, Yanbin</creator><creator>Yang, Chunpeng</creator><creator>Li, Hongbian</creator><creator>Hu, Liangbing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope></search><sort><creationdate>20170401</creationdate><title>A carbon-based 3D current collector with surface protection for Li metal anode</title><author>Zhang, Ying ; Liu, Boyang ; Hitz, Emily ; Luo, Wei ; Yao, Yonggang ; Li, Yiju ; Dai, Jiaqi ; Chen, Chaoji ; Wang, Yanbin ; Yang, Chunpeng ; Li, Hongbian ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Aluminum oxide</topic><topic>Anodes</topic><topic>Anodic protection</topic><topic>Atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon nanotubes</topic><topic>Charge distribution</topic><topic>Chemistry and Materials Science</topic><topic>Collectors</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Dendrites</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Hazards</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Research Article</topic><topic>Solid electrolytes</topic><topic>Specific capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Hitz, Emily</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Li, Yiju</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Chen, Chaoji</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Yang, Chunpeng</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Liu, Boyang</au><au>Hitz, Emily</au><au>Luo, Wei</au><au>Yao, Yonggang</au><au>Li, Yiju</au><au>Dai, Jiaqi</au><au>Chen, Chaoji</au><au>Wang, Yanbin</au><au>Yang, Chunpeng</au><au>Li, Hongbian</au><au>Hu, Liangbing</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A carbon-based 3D current collector with surface protection for Li metal anode</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>10</volume><issue>4</issue><spage>1356</spage><epage>1365</epage><pages>1356-1365</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal A1203 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm^-2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm^-2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1461-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-04, Vol.10 (4), p.1356-1365
issn 1998-0124
1998-0000
language eng
recordid cdi_osti_scitechconnect_1388492
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Accumulators
Aluminum oxide
Anodes
Anodic protection
Atomic layer deposition
Atomic layer epitaxy
Atomic/Molecular Structure and Spectra
Batteries
bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Biomedicine
Biotechnology
Carbon nanotubes
Charge distribution
Chemistry and Materials Science
Collectors
Condensed Matter Physics
Cycles
Dendrites
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Electrolytic cells
Hazards
Interface stability
Lithium
Materials Science
Mechanical properties
Metals
Nanotechnology
Rechargeable batteries
Redox potential
Research Article
Solid electrolytes
Specific capacity
title A carbon-based 3D current collector with surface protection for Li metal anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20carbon-based%203D%20current%20collector%20with%20surface%20protection%20for%20Li%20metal%20anode&rft.jtitle=Nano%20research&rft.au=Zhang,%20Ying&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Nanostructures%20for%20Electrical%20Energy%20Storage%20(NEES)&rft.date=2017-04-01&rft.volume=10&rft.issue=4&rft.spage=1356&rft.epage=1365&rft.pages=1356-1365&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1461-2&rft_dat=%3Cproquest_osti_%3E2001476267%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-cbae3c75ac72ee60e70942af444c0122dfb7877184d7b310c6a09585852e4f153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001476267&rft_id=info:pmid/&rft_cqvip_id=672150577&rfr_iscdi=true