Loading…

Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)

Single crystals of the cubic Laves ternaries ZrM2−δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0≤δ≤1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2016-10, Vol.416, p.401-407
Main Authors: Svanidze, E., II, M. Kindy, Georgen, C., Fulfer, B.W., Lapidus, S.H., Chan, J.Y., Morosan, E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 407
container_issue
container_start_page 401
container_title Journal of magnetism and magnetic materials
container_volume 416
creator Svanidze, E.
II, M. Kindy
Georgen, C.
Fulfer, B.W.
Lapidus, S.H.
Chan, J.Y.
Morosan, E.
description Single crystals of the cubic Laves ternaries ZrM2−δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0≤δ≤1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length dM–M in ZrM2−δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular. •Single crystals of cubic Laves ternaries ZrM2−δZn20+δ (M =Mn, Fe, Co, Ni, and Cu, 0≤δ≤1) have been grown and characterized.•Comparison with structurally similar cubic binaries ZrM2(M =Mn, Fe, Co, Ni, and Cu) reveals transition from local to itinerant magnetism as a function of M–M bond length.•Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in intermetallic compounds.
doi_str_mv 10.1016/j.jmmm.2016.04.082
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1392294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885316304577</els_id><sourcerecordid>S0304885316304577</sourcerecordid><originalsourceid>FETCH-LOGICAL-e235t-19f4eddfa4b66aea89b5882390bb1c0b8876bd2f5e923cbc1dc0823a7ac85ea93</originalsourceid><addsrcrecordid>eNotkLFOwzAQhj2ARCm8AFPEBEIJZztJbQkGFAFFasUCSxfLsS9tojapHFOJjZEZXqXP0Yfok5CoTHc6fbq7_yPkgkJEgaa3VVStVquIdX0EcQSCHZEBcIhDIRJ-Qk7btgIAGot0QMZTPa_RlybQtQ2M-2y9Xi6budPrRTdcu2aNzpfYBk0RzNyU7b9_dttZzeBmtw2upveZ23_9Zh_XZ-S40MsWz__rkLw_Pb5l43Dy-vySPUxCZDzxIZVFjNYWOs7TVKMWMk-EYFxCnlMDuRCjNLesSFAybnJDrekCcD3SRiSoJR-Sy8PepvWlak3p0SxMU9dovKJcMibjDro7QNh9sinR9SDWBm3pes42paKgel2qUr0u1etSEKv-2h-XDWS1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Svanidze, E. ; II, M. Kindy ; Georgen, C. ; Fulfer, B.W. ; Lapidus, S.H. ; Chan, J.Y. ; Morosan, E.</creator><creatorcontrib>Svanidze, E. ; II, M. Kindy ; Georgen, C. ; Fulfer, B.W. ; Lapidus, S.H. ; Chan, J.Y. ; Morosan, E. ; Rice Univ., Houston, TX (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Single crystals of the cubic Laves ternaries ZrM2−δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0≤δ≤1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length dM–M in ZrM2−δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular. •Single crystals of cubic Laves ternaries ZrM2−δZn20+δ (M =Mn, Fe, Co, Ni, and Cu, 0≤δ≤1) have been grown and characterized.•Comparison with structurally similar cubic binaries ZrM2(M =Mn, Fe, Co, Ni, and Cu) reveals transition from local to itinerant magnetism as a function of M–M bond length.•Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in intermetallic compounds.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2016.04.082</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Cubic Laves phases ; Intermetallics ; Itinerant magnetism ; Magnetic moment dilution ; Magnetism ; MATERIALS SCIENCE ; Transition metal</subject><ispartof>Journal of magnetism and magnetic materials, 2016-10, Vol.416, p.401-407</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1392294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>II, M. Kindy</creatorcontrib><creatorcontrib>Georgen, C.</creatorcontrib><creatorcontrib>Fulfer, B.W.</creatorcontrib><creatorcontrib>Lapidus, S.H.</creatorcontrib><creatorcontrib>Chan, J.Y.</creatorcontrib><creatorcontrib>Morosan, E.</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)</title><title>Journal of magnetism and magnetic materials</title><description>Single crystals of the cubic Laves ternaries ZrM2−δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0≤δ≤1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length dM–M in ZrM2−δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular. •Single crystals of cubic Laves ternaries ZrM2−δZn20+δ (M =Mn, Fe, Co, Ni, and Cu, 0≤δ≤1) have been grown and characterized.•Comparison with structurally similar cubic binaries ZrM2(M =Mn, Fe, Co, Ni, and Cu) reveals transition from local to itinerant magnetism as a function of M–M bond length.•Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in intermetallic compounds.</description><subject>Cubic Laves phases</subject><subject>Intermetallics</subject><subject>Itinerant magnetism</subject><subject>Magnetic moment dilution</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Transition metal</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAQhj2ARCm8AFPEBEIJZztJbQkGFAFFasUCSxfLsS9tojapHFOJjZEZXqXP0Yfok5CoTHc6fbq7_yPkgkJEgaa3VVStVquIdX0EcQSCHZEBcIhDIRJ-Qk7btgIAGot0QMZTPa_RlybQtQ2M-2y9Xi6budPrRTdcu2aNzpfYBk0RzNyU7b9_dttZzeBmtw2upveZ23_9Zh_XZ-S40MsWz__rkLw_Pb5l43Dy-vySPUxCZDzxIZVFjNYWOs7TVKMWMk-EYFxCnlMDuRCjNLesSFAybnJDrekCcD3SRiSoJR-Sy8PepvWlak3p0SxMU9dovKJcMibjDro7QNh9sinR9SDWBm3pes42paKgel2qUr0u1etSEKv-2h-XDWS1</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Svanidze, E.</creator><creator>II, M. Kindy</creator><creator>Georgen, C.</creator><creator>Fulfer, B.W.</creator><creator>Lapidus, S.H.</creator><creator>Chan, J.Y.</creator><creator>Morosan, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161015</creationdate><title>Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)</title><author>Svanidze, E. ; II, M. Kindy ; Georgen, C. ; Fulfer, B.W. ; Lapidus, S.H. ; Chan, J.Y. ; Morosan, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e235t-19f4eddfa4b66aea89b5882390bb1c0b8876bd2f5e923cbc1dc0823a7ac85ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cubic Laves phases</topic><topic>Intermetallics</topic><topic>Itinerant magnetism</topic><topic>Magnetic moment dilution</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Transition metal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>II, M. Kindy</creatorcontrib><creatorcontrib>Georgen, C.</creatorcontrib><creatorcontrib>Fulfer, B.W.</creatorcontrib><creatorcontrib>Lapidus, S.H.</creatorcontrib><creatorcontrib>Chan, J.Y.</creatorcontrib><creatorcontrib>Morosan, E.</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svanidze, E.</au><au>II, M. Kindy</au><au>Georgen, C.</au><au>Fulfer, B.W.</au><au>Lapidus, S.H.</au><au>Chan, J.Y.</au><au>Morosan, E.</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2016-10-15</date><risdate>2016</risdate><volume>416</volume><spage>401</spage><epage>407</epage><pages>401-407</pages><issn>0304-8853</issn><abstract>Single crystals of the cubic Laves ternaries ZrM2−δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0≤δ≤1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length dM–M in ZrM2−δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular. •Single crystals of cubic Laves ternaries ZrM2−δZn20+δ (M =Mn, Fe, Co, Ni, and Cu, 0≤δ≤1) have been grown and characterized.•Comparison with structurally similar cubic binaries ZrM2(M =Mn, Fe, Co, Ni, and Cu) reveals transition from local to itinerant magnetism as a function of M–M bond length.•Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in intermetallic compounds.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2016.04.082</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2016-10, Vol.416, p.401-407
issn 0304-8853
language eng
recordid cdi_osti_scitechconnect_1392294
source ScienceDirect Freedom Collection 2022-2024
subjects Cubic Laves phases
Intermetallics
Itinerant magnetism
Magnetic moment dilution
Magnetism
MATERIALS SCIENCE
Transition metal
title Magnetic and crystallographic properties of ZrM2−δZn20+δ (M=Cr–Cu)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20crystallographic%20properties%20of%20ZrM2%E2%88%92%CE%B4Zn20+%CE%B4%20(M=Cr%E2%80%93Cu)&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Svanidze,%20E.&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2016-10-15&rft.volume=416&rft.spage=401&rft.epage=407&rft.pages=401-407&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2016.04.082&rft_dat=%3Celsevier_osti_%3ES0304885316304577%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e235t-19f4eddfa4b66aea89b5882390bb1c0b8876bd2f5e923cbc1dc0823a7ac85ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true