Loading…

Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory

The thermal decomposition of nitromethane provides a classic example of the competition between roaming mediated isomerization and simple bond fission. A recent theoretical analysis suggests that as the pressure is increased from 2 to 200 Torr the product distribution undergoes a sharp transition fr...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-07, Vol.119 (28), p.7872-7893
Main Authors: Annesley, Christopher J, Randazzo, John B, Klippenstein, Stephen J, Harding, Lawrence B, Jasper, Ahren W, Georgievskii, Yuri, Ruscic, Branko, Tranter, Robert S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermal decomposition of nitromethane provides a classic example of the competition between roaming mediated isomerization and simple bond fission. A recent theoretical analysis suggests that as the pressure is increased from 2 to 200 Torr the product distribution undergoes a sharp transition from roaming dominated to bond-fission dominated. Laser schlieren densitometry is used to explore the variation in the effect of roaming on the density gradients for CH3NO2 decomposition in a shock tube for pressures of 30, 60, and 120 Torr at temperatures ranging from 1200 to 1860 K. A complementary theoretical analysis provides a novel exploration of the effects of roaming on the thermal decomposition kinetics. The analysis focuses on the roaming dynamics in a reduced dimensional space consisting of the rigid-body motions of the CH3 and NO2 radicals. A high-level reduced-dimensionality potential energy surface is developed from fits to large-scale multireference ab initio calculations. Rigid body trajectory simulations coupled with master equation kinetics calculations provide high-level a priori predictions for the thermal branching between roaming and dissociation. A statistical model provides a qualitative/semiquantitative interpretation of the results. Modeling efforts explore the relation between the predicted roaming branching and the observed gradients. Overall, the experiments are found to be fairly consistent with the theoretically proposed branching ratio, but they are also consistent with a no-roaming scenario and the underlying reasons are discussed. The theoretical predictions are also compared with prior theoretical predictions, with a related statistical model, and with the extant experimental data for the decomposition of CH3NO2, and for the reaction of CH3 with NO2.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.5b01563