Loading…
Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM
In this work, we investigate deuterium retention at the Mo–Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the...
Saved in:
Published in: | Journal of nuclear materials 2015-08, Vol.463 (C), p.1177-1180 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we investigate deuterium retention at the Mo–Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygen reduces the thermal stability of D in the film, causing D2O and D2 to be released from the surface at temperatures 150–200K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2014.10.048 |