Loading…

Cobalt Oxide on N‑Doped Carbon for 1‑Butene Oligomerization to Produce Linear Octenes

Cobalt oxide supported on N-doped carbon catalysts were investigated for 1-butene oligomerization. The materials were synthesized by treating activated carbon with nitric acid and subsequently with NH3 at 200, 400, 600, and 800 °C, followed by impregnation with cobalt. The 1-butene oligomerization s...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2017-11, Vol.7 (11), p.7479-7489
Main Authors: Zhao, Dongting, Xu, Zhuoran, Chada, Joseph P, Carrero, Carlos A, Rosenfeld, Devon C, Rogers, Jessica L, Hermans, Ive, Huber, George W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cobalt oxide supported on N-doped carbon catalysts were investigated for 1-butene oligomerization. The materials were synthesized by treating activated carbon with nitric acid and subsequently with NH3 at 200, 400, 600, and 800 °C, followed by impregnation with cobalt. The 1-butene oligomerization selectivity increased with ammonia treatment temperature of the carbon support. The oligomerization selectivity of cobalt oxide on N-doped carbon synthesized at 800 °C (800A-CoOx/N-C) is 2.6 times higher than previously reported cobalt oxide on N-doped carbon synthesized with NH4OH (2A-CoOx/N-C). Over 70% of the butene dimers were linear C8 olefins for all catalysts. The oligomerization selectivity increased with 1-butene conversion. The catalysts were characterized by elemental analysis, N2 adsorption, X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). The nitrogen content of the catalysts increases with ammonia treatment temperature as confirmed by elemental analysis. The surface content of pyridinic nitrogen with a binding energy of 398.4 ± 0.1 eV increased with ammonia treatment temperature as evidenced by deconvolution of N 1s XPS spectra.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.7b01482