Loading…

Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media

Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic sy...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2017-07, Vol.8 (13), p.2881-2886
Main Authors: Alsudairi, Amell, Li, Jingkun, Ramaswamy, Nagappan, Mukerjee, Sanjeev, Abraham, K. M, Jia, Qingying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63
cites cdi_FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63
container_end_page 2886
container_issue 13
container_start_page 2881
container_title The journal of physical chemistry letters
container_volume 8
creator Alsudairi, Amell
Li, Jingkun
Ramaswamy, Nagappan
Mukerjee, Sanjeev
Abraham, K. M
Jia, Qingying
description Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe­(II)/Fe­(I) redox center. The Fe­(II)/Fe­(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe­(I) state.
doi_str_mv 10.1021/acs.jpclett.7b01126
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1409596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908433103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoflR_gSDBk5fWZLPNZo9S_IKKUqrXkGQnNrJNapKK_fdubRVPnmYOz_vO8CB0SsmAkoJeKpMGbwvTQs6DShNKC76DDmldin5FxXD3z36AjlJ6I4TXRFT76KAQw1pQzg_RywRSaD-cf8V5Bvg-Bo-fZnmm2mBWyjsPeAJN-MTTqHxy2QWfsA0RP04meKSyalfJJew8vnpfQlgm_ACNU8doz6o2wcl29tDzzfV0dNcfP97ej67GfVUykftNRYktuOaaDA1ldUUEs8qCIQXhlmujBW8qC7bbwIJWWlBRsrLiGgrecNZD55vekLKTybgMZmaC92CypCWph_UauthAixi6J1OWc5cMtK3y648l7ayUjFHCOpRtUBNDShGsXEQ3V3ElKZFr67KzLrfW5dZ6lzrbHljqOTS_mR_NHXC5Ab7TYRl9J-Xfyi-lh5Gk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908433103</pqid></control><display><type>article</type><title>Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Alsudairi, Amell ; Li, Jingkun ; Ramaswamy, Nagappan ; Mukerjee, Sanjeev ; Abraham, K. M ; Jia, Qingying</creator><creatorcontrib>Alsudairi, Amell ; Li, Jingkun ; Ramaswamy, Nagappan ; Mukerjee, Sanjeev ; Abraham, K. M ; Jia, Qingying ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe­(II)/Fe­(I) redox center. The Fe­(II)/Fe­(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe­(I) state.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.7b01126</identifier><identifier>PMID: 28598166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry letters, 2017-07, Vol.8 (13), p.2881-2886</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63</citedby><cites>FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63</cites><orcidid>0000-0002-2980-7655 ; 0000-0002-4005-8894 ; 0000-0003-1699-3089 ; 0000000240058894 ; 0000000229807655 ; 0000000316993089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28598166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1409596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsudairi, Amell</creatorcontrib><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Ramaswamy, Nagappan</creatorcontrib><creatorcontrib>Mukerjee, Sanjeev</creatorcontrib><creatorcontrib>Abraham, K. M</creatorcontrib><creatorcontrib>Jia, Qingying</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe­(II)/Fe­(I) redox center. The Fe­(II)/Fe­(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe­(I) state.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoflR_gSDBk5fWZLPNZo9S_IKKUqrXkGQnNrJNapKK_fdubRVPnmYOz_vO8CB0SsmAkoJeKpMGbwvTQs6DShNKC76DDmldin5FxXD3z36AjlJ6I4TXRFT76KAQw1pQzg_RywRSaD-cf8V5Bvg-Bo-fZnmm2mBWyjsPeAJN-MTTqHxy2QWfsA0RP04meKSyalfJJew8vnpfQlgm_ACNU8doz6o2wcl29tDzzfV0dNcfP97ej67GfVUykftNRYktuOaaDA1ldUUEs8qCIQXhlmujBW8qC7bbwIJWWlBRsrLiGgrecNZD55vekLKTybgMZmaC92CypCWph_UauthAixi6J1OWc5cMtK3y648l7ayUjFHCOpRtUBNDShGsXEQ3V3ElKZFr67KzLrfW5dZ6lzrbHljqOTS_mR_NHXC5Ab7TYRl9J-Xfyi-lh5Gk</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Alsudairi, Amell</creator><creator>Li, Jingkun</creator><creator>Ramaswamy, Nagappan</creator><creator>Mukerjee, Sanjeev</creator><creator>Abraham, K. M</creator><creator>Jia, Qingying</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2980-7655</orcidid><orcidid>https://orcid.org/0000-0002-4005-8894</orcidid><orcidid>https://orcid.org/0000-0003-1699-3089</orcidid><orcidid>https://orcid.org/0000000240058894</orcidid><orcidid>https://orcid.org/0000000229807655</orcidid><orcidid>https://orcid.org/0000000316993089</orcidid></search><sort><creationdate>20170706</creationdate><title>Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media</title><author>Alsudairi, Amell ; Li, Jingkun ; Ramaswamy, Nagappan ; Mukerjee, Sanjeev ; Abraham, K. M ; Jia, Qingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsudairi, Amell</creatorcontrib><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Ramaswamy, Nagappan</creatorcontrib><creatorcontrib>Mukerjee, Sanjeev</creatorcontrib><creatorcontrib>Abraham, K. M</creatorcontrib><creatorcontrib>Jia, Qingying</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsudairi, Amell</au><au>Li, Jingkun</au><au>Ramaswamy, Nagappan</au><au>Mukerjee, Sanjeev</au><au>Abraham, K. M</au><au>Jia, Qingying</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2017-07-06</date><risdate>2017</risdate><volume>8</volume><issue>13</issue><spage>2881</spage><epage>2886</epage><pages>2881-2886</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe­(II)/Fe­(I) redox center. The Fe­(II)/Fe­(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe­(I) state.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28598166</pmid><doi>10.1021/acs.jpclett.7b01126</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2980-7655</orcidid><orcidid>https://orcid.org/0000-0002-4005-8894</orcidid><orcidid>https://orcid.org/0000-0003-1699-3089</orcidid><orcidid>https://orcid.org/0000000240058894</orcidid><orcidid>https://orcid.org/0000000229807655</orcidid><orcidid>https://orcid.org/0000000316993089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2017-07, Vol.8 (13), p.2881-2886
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1409596
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20Iron%20Phthalocyanine%20Redox%20Transitions%20for%20ORR%20Catalysis%20in%20Aqueous%20Media&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Alsudairi,%20Amell&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2017-07-06&rft.volume=8&rft.issue=13&rft.spage=2881&rft.epage=2886&rft.pages=2881-2886&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.7b01126&rft_dat=%3Cproquest_osti_%3E1908433103%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a438t-d710f26b6b05c1397083fafec0206f6bcb86d7fefbcbefebab81843476be26d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908433103&rft_id=info:pmid/28598166&rfr_iscdi=true