Loading…

Effective particle size from molecular dynamics simulations in fluids

We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this syste...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and computational fluid dynamics 2018-04, Vol.32 (2), p.215-233
Main Authors: Ju, Jianwei, Welch, Paul M., Rasmussen, Kim Ø., Redondo, Antonio, Vorobieff, Peter, Kober, Edward M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753
cites cdi_FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753
container_end_page 233
container_issue 2
container_start_page 215
container_title Theoretical and computational fluid dynamics
container_volume 32
creator Ju, Jianwei
Welch, Paul M.
Rasmussen, Kim Ø.
Redondo, Antonio
Vorobieff, Peter
Kober, Edward M.
description We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ∼ 0.75 σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5 σ and 1.0 σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
doi_str_mv 10.1007/s00162-017-0450-0
format article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1411988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530828700</galeid><sourcerecordid>A530828700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVpoK6bH5Db0p7XGX2tVscQ3DZgyCU9C1k7cmR2JVdaF5xfH5ntoZcyh4GZ5x1m5iXkjsKGAqj7AkA71gJVLQgJLXwgKyo4axmT8JGsQHPZCt2JT-RzKUcA4LLrV2S79R7dHP5gc7J5Dm7EpoQ3bHxOUzOlEd15tLkZLtFOwZXanGphDimWJsTGj-cwlC_kxtux4O3fvCa_vm9fHn-2u-cfT48Pu9YJJud27zo1MMG9AttJIdhedIIK1eO-0xq1FlJSYCgHuVdDB30PWDHgXFtgSvI1-brMTWUOprgwo3t1KcZ6gqGCUt33Ffq2QKecfp-xzOaYzjnWvQzVSgilgfJKbRbqYEc0Ifo0Z-tqDFjvTBF9qPUHyaFnvarvWhO6CFxOpWT05pTDZPPFUDBXD8zigakemKsH5qphi6ZUNh4w_7PKf0XvOJSGeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974479013</pqid></control><display><type>article</type><title>Effective particle size from molecular dynamics simulations in fluids</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ju, Jianwei ; Welch, Paul M. ; Rasmussen, Kim Ø. ; Redondo, Antonio ; Vorobieff, Peter ; Kober, Edward M.</creator><creatorcontrib>Ju, Jianwei ; Welch, Paul M. ; Rasmussen, Kim Ø. ; Redondo, Antonio ; Vorobieff, Peter ; Kober, Edward M. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ∼ 0.75 σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5 σ and 1.0 σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-017-0450-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational fluid dynamics ; Computational Science and Engineering ; Computer simulation ; Continuum mechanics ; Continuum modeling ; Dynamics ; ENGINEERING ; Engineering Fluid Dynamics ; Flow (Dynamics) ; Fluids ; Forces (mechanics) ; Hydrodynamics ; Interactions ; Material Science ; Mechanics ; Molecular dynamics ; molecular dynamics, colloids ; Original Article ; Particle size ; Physics ; Simulation ; Viscosity</subject><ispartof>Theoretical and computational fluid dynamics, 2018-04, Vol.32 (2), p.215-233</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Computational Fluid Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753</citedby><cites>FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753</cites><orcidid>0000-0002-5335-0931 ; 0000000253350931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1411988$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Jianwei</creatorcontrib><creatorcontrib>Welch, Paul M.</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø.</creatorcontrib><creatorcontrib>Redondo, Antonio</creatorcontrib><creatorcontrib>Vorobieff, Peter</creatorcontrib><creatorcontrib>Kober, Edward M.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Effective particle size from molecular dynamics simulations in fluids</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ∼ 0.75 σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5 σ and 1.0 σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Continuum mechanics</subject><subject>Continuum modeling</subject><subject>Dynamics</subject><subject>ENGINEERING</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow (Dynamics)</subject><subject>Fluids</subject><subject>Forces (mechanics)</subject><subject>Hydrodynamics</subject><subject>Interactions</subject><subject>Material Science</subject><subject>Mechanics</subject><subject>Molecular dynamics</subject><subject>molecular dynamics, colloids</subject><subject>Original Article</subject><subject>Particle size</subject><subject>Physics</subject><subject>Simulation</subject><subject>Viscosity</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVpoK6bH5Db0p7XGX2tVscQ3DZgyCU9C1k7cmR2JVdaF5xfH5ntoZcyh4GZ5x1m5iXkjsKGAqj7AkA71gJVLQgJLXwgKyo4axmT8JGsQHPZCt2JT-RzKUcA4LLrV2S79R7dHP5gc7J5Dm7EpoQ3bHxOUzOlEd15tLkZLtFOwZXanGphDimWJsTGj-cwlC_kxtux4O3fvCa_vm9fHn-2u-cfT48Pu9YJJud27zo1MMG9AttJIdhedIIK1eO-0xq1FlJSYCgHuVdDB30PWDHgXFtgSvI1-brMTWUOprgwo3t1KcZ6gqGCUt33Ffq2QKecfp-xzOaYzjnWvQzVSgilgfJKbRbqYEc0Ifo0Z-tqDFjvTBF9qPUHyaFnvarvWhO6CFxOpWT05pTDZPPFUDBXD8zigakemKsH5qphi6ZUNh4w_7PKf0XvOJSGeA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ju, Jianwei</creator><creator>Welch, Paul M.</creator><creator>Rasmussen, Kim Ø.</creator><creator>Redondo, Antonio</creator><creator>Vorobieff, Peter</creator><creator>Kober, Edward M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Science + Business Media</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5335-0931</orcidid><orcidid>https://orcid.org/0000000253350931</orcidid></search><sort><creationdate>20180401</creationdate><title>Effective particle size from molecular dynamics simulations in fluids</title><author>Ju, Jianwei ; Welch, Paul M. ; Rasmussen, Kim Ø. ; Redondo, Antonio ; Vorobieff, Peter ; Kober, Edward M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Continuum mechanics</topic><topic>Continuum modeling</topic><topic>Dynamics</topic><topic>ENGINEERING</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow (Dynamics)</topic><topic>Fluids</topic><topic>Forces (mechanics)</topic><topic>Hydrodynamics</topic><topic>Interactions</topic><topic>Material Science</topic><topic>Mechanics</topic><topic>Molecular dynamics</topic><topic>molecular dynamics, colloids</topic><topic>Original Article</topic><topic>Particle size</topic><topic>Physics</topic><topic>Simulation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Jianwei</creatorcontrib><creatorcontrib>Welch, Paul M.</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø.</creatorcontrib><creatorcontrib>Redondo, Antonio</creatorcontrib><creatorcontrib>Vorobieff, Peter</creatorcontrib><creatorcontrib>Kober, Edward M.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Jianwei</au><au>Welch, Paul M.</au><au>Rasmussen, Kim Ø.</au><au>Redondo, Antonio</au><au>Vorobieff, Peter</au><au>Kober, Edward M.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective particle size from molecular dynamics simulations in fluids</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>215</spage><epage>233</epage><pages>215-233</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ∼ 0.75 σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5 σ and 1.0 σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-017-0450-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5335-0931</orcidid><orcidid>https://orcid.org/0000000253350931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2018-04, Vol.32 (2), p.215-233
issn 0935-4964
1432-2250
language eng
recordid cdi_osti_scitechconnect_1411988
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analysis
Classical and Continuum Physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational fluid dynamics
Computational Science and Engineering
Computer simulation
Continuum mechanics
Continuum modeling
Dynamics
ENGINEERING
Engineering Fluid Dynamics
Flow (Dynamics)
Fluids
Forces (mechanics)
Hydrodynamics
Interactions
Material Science
Mechanics
Molecular dynamics
molecular dynamics, colloids
Original Article
Particle size
Physics
Simulation
Viscosity
title Effective particle size from molecular dynamics simulations in fluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20particle%20size%20from%20molecular%20dynamics%20simulations%20in%20fluids&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Ju,%20Jianwei&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-04-01&rft.volume=32&rft.issue=2&rft.spage=215&rft.epage=233&rft.pages=215-233&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-017-0450-0&rft_dat=%3Cgale_osti_%3EA530828700%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-bc67d243f70a65442b4641478eb699e99455102e5d5b7d60880e5440339a02753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1974479013&rft_id=info:pmid/&rft_galeid=A530828700&rfr_iscdi=true