Loading…

Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation

Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed dropl...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-12, Vol.9 (51), p.44911-44921
Main Authors: Wen, Rongfu, Xu, Shanshan, Zhao, Dongliang, Lee, Yung-Cheng, Ma, Xuehu, Yang, Ronggui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83
cites cdi_FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83
container_end_page 44921
container_issue 51
container_start_page 44911
container_title ACS applied materials & interfaces
container_volume 9
creator Wen, Rongfu
Xu, Shanshan
Zhao, Dongliang
Lee, Yung-Cheng
Ma, Xuehu
Yang, Ronggui
description Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.
doi_str_mv 10.1021/acsami.7b14960
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1415123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974010919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0Eoh9w5YgsTggpi504cXyslsKCChyAs-WPSeMqsYPtqFrxz-MqS2-cZjTze-_wHkKvKNlRUtP3yiQ1ux3XlImOPEHnVDBW9XVbP33cGTtDFyndEdI1NWmfo7Na1JT1pDtHfw4OoopmdEZN-Me6QByPNoZlDNqZcoiDMpDwvcsj_upM-aicIXqw-Jvy4d5FwFcxqmPCQ4j44G7H6noYnHHgzRF_WefF-Vv8oQgnyHgfvAWfVHbBv0DPBjUleHmal-jXx-uf-0N18_3T5_3VTaUawXPV2r5vuW2AdlwbSwlrO6K5FVwpxXutLSjeaWoGKrQRPdSWAOMaiNUdVX1zid5sviFlJ5NxGcxogvdgsqSMtrRuCvR2g5YYfq-QspxdMjBNykNYk6SCM0KJoKKguw0taaQUYZBLdLOKR0mJfGhFbq3IUytF8PrkveoZ7CP-r4YCvNuAIpR3YY2-5PE_t782Jpo2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974010919</pqid></control><display><type>article</type><title>Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Lee, Yung-Cheng ; Ma, Xuehu ; Yang, Ronggui</creator><creatorcontrib>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Lee, Yung-Cheng ; Ma, Xuehu ; Yang, Ronggui ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b14960</identifier><identifier>PMID: 29214806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>condensation ; hierarchical nanostructured surface ; jumping droplets ; MATERIALS SCIENCE ; nucleation control ; spontaneous droplet movement ; superhydrophobic</subject><ispartof>ACS applied materials &amp; interfaces, 2017-12, Vol.9 (51), p.44911-44921</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83</citedby><cites>FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83</cites><orcidid>0000-0001-6499-7530 ; 0000-0002-3602-6945 ; 0000000236026945 ; 0000000164997530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29214806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1415123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.</description><subject>condensation</subject><subject>hierarchical nanostructured surface</subject><subject>jumping droplets</subject><subject>MATERIALS SCIENCE</subject><subject>nucleation control</subject><subject>spontaneous droplet movement</subject><subject>superhydrophobic</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS0Eoh9w5YgsTggpi504cXyslsKCChyAs-WPSeMqsYPtqFrxz-MqS2-cZjTze-_wHkKvKNlRUtP3yiQ1ux3XlImOPEHnVDBW9XVbP33cGTtDFyndEdI1NWmfo7Na1JT1pDtHfw4OoopmdEZN-Me6QByPNoZlDNqZcoiDMpDwvcsj_upM-aicIXqw-Jvy4d5FwFcxqmPCQ4j44G7H6noYnHHgzRF_WefF-Vv8oQgnyHgfvAWfVHbBv0DPBjUleHmal-jXx-uf-0N18_3T5_3VTaUawXPV2r5vuW2AdlwbSwlrO6K5FVwpxXutLSjeaWoGKrQRPdSWAOMaiNUdVX1zid5sviFlJ5NxGcxogvdgsqSMtrRuCvR2g5YYfq-QspxdMjBNykNYk6SCM0KJoKKguw0taaQUYZBLdLOKR0mJfGhFbq3IUytF8PrkveoZ7CP-r4YCvNuAIpR3YY2-5PE_t782Jpo2</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Wen, Rongfu</creator><creator>Xu, Shanshan</creator><creator>Zhao, Dongliang</creator><creator>Lee, Yung-Cheng</creator><creator>Ma, Xuehu</creator><creator>Yang, Ronggui</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6499-7530</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid><orcidid>https://orcid.org/0000000236026945</orcidid><orcidid>https://orcid.org/0000000164997530</orcidid></search><sort><creationdate>20171227</creationdate><title>Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation</title><author>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Lee, Yung-Cheng ; Ma, Xuehu ; Yang, Ronggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>condensation</topic><topic>hierarchical nanostructured surface</topic><topic>jumping droplets</topic><topic>MATERIALS SCIENCE</topic><topic>nucleation control</topic><topic>spontaneous droplet movement</topic><topic>superhydrophobic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Rongfu</au><au>Xu, Shanshan</au><au>Zhao, Dongliang</au><au>Lee, Yung-Cheng</au><au>Ma, Xuehu</au><au>Yang, Ronggui</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>9</volume><issue>51</issue><spage>44911</spage><epage>44921</epage><pages>44911-44921</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29214806</pmid><doi>10.1021/acsami.7b14960</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6499-7530</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid><orcidid>https://orcid.org/0000000236026945</orcidid><orcidid>https://orcid.org/0000000164997530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-12, Vol.9 (51), p.44911-44921
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1415123
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects condensation
hierarchical nanostructured surface
jumping droplets
MATERIALS SCIENCE
nucleation control
spontaneous droplet movement
superhydrophobic
title Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Superhydrophobic%20Surfaces%20with%20Micropatterned%20Nanowire%20Arrays%20for%20High-Efficiency%20Jumping%20Droplet%20Condensation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wen,%20Rongfu&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-12-27&rft.volume=9&rft.issue=51&rft.spage=44911&rft.epage=44921&rft.pages=44911-44921&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b14960&rft_dat=%3Cproquest_osti_%3E1974010919%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a397t-5d8857d3e167bcd104560b7d97aaa78bbdea76b1cf19bc98e2d0e47be0db61a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1974010919&rft_id=info:pmid/29214806&rfr_iscdi=true