Loading…
Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the e...
Saved in:
Published in: | Advanced energy materials 2018-04, Vol.8 (12), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Wang, Gang Eastham, Nicholas D. Aldrich, Thomas J. Ma, Boran Manley, Eric F. Chen, Zhihua Chen, Lin X. de la Cruz, Monica Olvera Chang, Robert P. H. Melkonyan, Ferdinand S. Facchetti, Antonio Marks, Tobin J. |
description | Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PBDTT‐FTTE) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.
The templating effects in morphology engineering by regulating aggregation are clearly demonstrated for the first time in all‐polymer solar cells, where the morphology may be templated by the amorphous phase in one blend and by the semicrystalline phase in another, all dictated by the degree of polymer aggregation. |
doi_str_mv | 10.1002/aenm.201702173 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1416999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030714147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEgjYsrZg3TKOnaRelqo8JF4SsLaMM0mMXLvYLig7PoFv5EtIVQRLZjOvc0ejm2VHFMYUID9V6BbjHGgFOa3YVrZHS8pH5YTD9m_N8t3sMMYXGIILCoztZf6-88krncwbkjOLriY3Piw7b33bk7lrjUMMxrUkdcGv2o489DHhQiWjlbU9eVy59XbatgHbYeodMY5Mrf36-Lz3tl9gIA_eqkBmaG08yHYaZSMe_uT97Ol8_ji7HF3fXVzNptcjzQtgo6JSWjR1icWzrooaaigFH3rARilWgxa6zhte8nxCOQNaFJNqUj_nUBeFYAzZfna8uetjMjJqk1B32juHOknKaSmEGKCTDbQM_nWFMckXvwpu-EvmwKAaOF4N1HhD6eBjDNjIZTALFXpJQa7Nl2vz5a_5g0BsBO_GYv8PLafz25s_7TfpzYoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030714147</pqid></control><display><type>article</type><title>Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Gang ; Eastham, Nicholas D. ; Aldrich, Thomas J. ; Ma, Boran ; Manley, Eric F. ; Chen, Zhihua ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Chang, Robert P. H. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creator><creatorcontrib>Wang, Gang ; Eastham, Nicholas D. ; Aldrich, Thomas J. ; Ma, Boran ; Manley, Eric F. ; Chen, Zhihua ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Chang, Robert P. H. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</creatorcontrib><description>Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PBDTT‐FTTE) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.
The templating effects in morphology engineering by regulating aggregation are clearly demonstrated for the first time in all‐polymer solar cells, where the morphology may be templated by the amorphous phase in one blend and by the semicrystalline phase in another, all dictated by the degree of polymer aggregation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201702173</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; all‐polymer solar cells ; Circuits ; coarse‐grained modeling ; Data acquisition ; Microstructure ; Miscibility ; Morphology ; morphology engineering ; Naphthalene ; Optoelectronics ; organic photovoltaics ; Photovoltaic cells ; Polymers ; Solar cells ; templating effects ; Texturing ; Thermal analysis ; Transmission electron microscopy</subject><ispartof>Advanced energy materials, 2018-04, Vol.8 (12), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3</citedby><cites>FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3</cites><orcidid>0000-0001-8771-0141 ; 0000000187710141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1416999$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Ma, Boran</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Chen, Zhihua</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><title>Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells</title><title>Advanced energy materials</title><description>Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PBDTT‐FTTE) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.
The templating effects in morphology engineering by regulating aggregation are clearly demonstrated for the first time in all‐polymer solar cells, where the morphology may be templated by the amorphous phase in one blend and by the semicrystalline phase in another, all dictated by the degree of polymer aggregation.</description><subject>Agglomeration</subject><subject>all‐polymer solar cells</subject><subject>Circuits</subject><subject>coarse‐grained modeling</subject><subject>Data acquisition</subject><subject>Microstructure</subject><subject>Miscibility</subject><subject>Morphology</subject><subject>morphology engineering</subject><subject>Naphthalene</subject><subject>Optoelectronics</subject><subject>organic photovoltaics</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>templating effects</subject><subject>Texturing</subject><subject>Thermal analysis</subject><subject>Transmission electron microscopy</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEgjYsrZg3TKOnaRelqo8JF4SsLaMM0mMXLvYLig7PoFv5EtIVQRLZjOvc0ejm2VHFMYUID9V6BbjHGgFOa3YVrZHS8pH5YTD9m_N8t3sMMYXGIILCoztZf6-88krncwbkjOLriY3Piw7b33bk7lrjUMMxrUkdcGv2o489DHhQiWjlbU9eVy59XbatgHbYeodMY5Mrf36-Lz3tl9gIA_eqkBmaG08yHYaZSMe_uT97Ol8_ji7HF3fXVzNptcjzQtgo6JSWjR1icWzrooaaigFH3rARilWgxa6zhte8nxCOQNaFJNqUj_nUBeFYAzZfna8uetjMjJqk1B32juHOknKaSmEGKCTDbQM_nWFMckXvwpu-EvmwKAaOF4N1HhD6eBjDNjIZTALFXpJQa7Nl2vz5a_5g0BsBO_GYv8PLafz25s_7TfpzYoU</recordid><startdate>20180425</startdate><enddate>20180425</enddate><creator>Wang, Gang</creator><creator>Eastham, Nicholas D.</creator><creator>Aldrich, Thomas J.</creator><creator>Ma, Boran</creator><creator>Manley, Eric F.</creator><creator>Chen, Zhihua</creator><creator>Chen, Lin X.</creator><creator>de la Cruz, Monica Olvera</creator><creator>Chang, Robert P. H.</creator><creator>Melkonyan, Ferdinand S.</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid></search><sort><creationdate>20180425</creationdate><title>Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells</title><author>Wang, Gang ; Eastham, Nicholas D. ; Aldrich, Thomas J. ; Ma, Boran ; Manley, Eric F. ; Chen, Zhihua ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Chang, Robert P. H. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>all‐polymer solar cells</topic><topic>Circuits</topic><topic>coarse‐grained modeling</topic><topic>Data acquisition</topic><topic>Microstructure</topic><topic>Miscibility</topic><topic>Morphology</topic><topic>morphology engineering</topic><topic>Naphthalene</topic><topic>Optoelectronics</topic><topic>organic photovoltaics</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>templating effects</topic><topic>Texturing</topic><topic>Thermal analysis</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Ma, Boran</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Chen, Zhihua</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Eastham, Nicholas D.</au><au>Aldrich, Thomas J.</au><au>Ma, Boran</au><au>Manley, Eric F.</au><au>Chen, Zhihua</au><au>Chen, Lin X.</au><au>de la Cruz, Monica Olvera</au><au>Chang, Robert P. H.</au><au>Melkonyan, Ferdinand S.</au><au>Facchetti, Antonio</au><au>Marks, Tobin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2018-04-25</date><risdate>2018</risdate><volume>8</volume><issue>12</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PBDTT‐FTTE) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.
The templating effects in morphology engineering by regulating aggregation are clearly demonstrated for the first time in all‐polymer solar cells, where the morphology may be templated by the amorphous phase in one blend and by the semicrystalline phase in another, all dictated by the degree of polymer aggregation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201702173</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-04, Vol.8 (12), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1416999 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agglomeration all‐polymer solar cells Circuits coarse‐grained modeling Data acquisition Microstructure Miscibility Morphology morphology engineering Naphthalene Optoelectronics organic photovoltaics Photovoltaic cells Polymers Solar cells templating effects Texturing Thermal analysis Transmission electron microscopy |
title | Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All‐Polymer Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoactive%20Blend%20Morphology%20Engineering%20through%20Systematically%20Tuning%20Aggregation%20in%20All%E2%80%90Polymer%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Gang&rft.date=2018-04-25&rft.volume=8&rft.issue=12&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201702173&rft_dat=%3Cproquest_osti_%3E2030714147%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4503-57ac9fd6e5bc75d0d0694fd60efaa3d0c9cd2f464281430155878db20d55933e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2030714147&rft_id=info:pmid/&rfr_iscdi=true |