Loading…

50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2018-01, Vol.26 (2), p.1825-1840
Main Authors: Imany, Poolad, Jaramillo-Villegas, Jose A, Odele, Ogaga D, Han, Kyunghun, Leaird, Daniel E, Lukens, Joseph M, Lougovski, Pavel, Qi, Minghao, Weiner, Andrew M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3
cites cdi_FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3
container_end_page 1840
container_issue 2
container_start_page 1825
container_title Optics express
container_volume 26
creator Imany, Poolad
Jaramillo-Villegas, Jose A
Odele, Ogaga D
Han, Kyunghun
Leaird, Daniel E
Lukens, Joseph M
Lougovski, Pavel
Qi, Minghao
Weiner, Andrew M
description Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.
doi_str_mv 10.1364/oe.26.001825
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1417425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1995167008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3</originalsourceid><addsrcrecordid>eNpNkTtvFTEQhS0EIg_oqJFFRYEvfq13XaIoJEiR0kBtee1x1mjXXmzfIvx6jG5AqWak-eZozhyE3jF6YELJzxkOXB0oZRMfXqBzRrUkkk7jy2f9Gbqo9Wdn5KjH1-iMa0mZpuocHQdKbm5_k7pbBx67vM04B7zEh4X4uEGqMSe74lDg1xGSeyRzTBhSs-lh7Qv7kltOtc_zhm3CORG3xB3XuEaXE06xlegBb9GVXKB2sZbLG_Qq2LXC26d6iX58vf5-dUvu7m--XX25I06qoRFp_RSECIPSQox-sH72UnOpZi6o1po77QKduRUB2KQUnWbvOFAKelLDGMQl-nDSzbVFU11s4JZ-VgLXDJNslHzo0McTtJfcPdZmtlgdrKtNkI_VMK0HpkZKp45-OqHdTK0FgtlL3Gx5NIyav2mY-2vDlTml0fH3T8rHeQP_H_73fvEHl5qFcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995167008</pqid></control><display><type>article</type><title>50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator</title><source>EZB Electronic Journals Library</source><creator>Imany, Poolad ; Jaramillo-Villegas, Jose A ; Odele, Ogaga D ; Han, Kyunghun ; Leaird, Daniel E ; Lukens, Joseph M ; Lougovski, Pavel ; Qi, Minghao ; Weiner, Andrew M</creator><creatorcontrib>Imany, Poolad ; Jaramillo-Villegas, Jose A ; Odele, Ogaga D ; Han, Kyunghun ; Leaird, Daniel E ; Lukens, Joseph M ; Lougovski, Pavel ; Qi, Minghao ; Weiner, Andrew M ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.26.001825</identifier><identifier>PMID: 29401906</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; Nonlinear optics ; parametric processes ; Quantum information and processing ; Quantum optics</subject><ispartof>Optics express, 2018-01, Vol.26 (2), p.1825-1840</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3</citedby><cites>FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29401906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1417425$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Imany, Poolad</creatorcontrib><creatorcontrib>Jaramillo-Villegas, Jose A</creatorcontrib><creatorcontrib>Odele, Ogaga D</creatorcontrib><creatorcontrib>Han, Kyunghun</creatorcontrib><creatorcontrib>Leaird, Daniel E</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Lougovski, Pavel</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.</description><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear optics</subject><subject>parametric processes</subject><subject>Quantum information and processing</subject><subject>Quantum optics</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkTtvFTEQhS0EIg_oqJFFRYEvfq13XaIoJEiR0kBtee1x1mjXXmzfIvx6jG5AqWak-eZozhyE3jF6YELJzxkOXB0oZRMfXqBzRrUkkk7jy2f9Gbqo9Wdn5KjH1-iMa0mZpuocHQdKbm5_k7pbBx67vM04B7zEh4X4uEGqMSe74lDg1xGSeyRzTBhSs-lh7Qv7kltOtc_zhm3CORG3xB3XuEaXE06xlegBb9GVXKB2sZbLG_Qq2LXC26d6iX58vf5-dUvu7m--XX25I06qoRFp_RSECIPSQox-sH72UnOpZi6o1po77QKduRUB2KQUnWbvOFAKelLDGMQl-nDSzbVFU11s4JZ-VgLXDJNslHzo0McTtJfcPdZmtlgdrKtNkI_VMK0HpkZKp45-OqHdTK0FgtlL3Gx5NIyav2mY-2vDlTml0fH3T8rHeQP_H_73fvEHl5qFcw</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Imany, Poolad</creator><creator>Jaramillo-Villegas, Jose A</creator><creator>Odele, Ogaga D</creator><creator>Han, Kyunghun</creator><creator>Leaird, Daniel E</creator><creator>Lukens, Joseph M</creator><creator>Lougovski, Pavel</creator><creator>Qi, Minghao</creator><creator>Weiner, Andrew M</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20180122</creationdate><title>50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator</title><author>Imany, Poolad ; Jaramillo-Villegas, Jose A ; Odele, Ogaga D ; Han, Kyunghun ; Leaird, Daniel E ; Lukens, Joseph M ; Lougovski, Pavel ; Qi, Minghao ; Weiner, Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear optics</topic><topic>parametric processes</topic><topic>Quantum information and processing</topic><topic>Quantum optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imany, Poolad</creatorcontrib><creatorcontrib>Jaramillo-Villegas, Jose A</creatorcontrib><creatorcontrib>Odele, Ogaga D</creatorcontrib><creatorcontrib>Han, Kyunghun</creatorcontrib><creatorcontrib>Leaird, Daniel E</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Lougovski, Pavel</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imany, Poolad</au><au>Jaramillo-Villegas, Jose A</au><au>Odele, Ogaga D</au><au>Han, Kyunghun</au><au>Leaird, Daniel E</au><au>Lukens, Joseph M</au><au>Lougovski, Pavel</au><au>Qi, Minghao</au><au>Weiner, Andrew M</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>26</volume><issue>2</issue><spage>1825</spage><epage>1840</epage><pages>1825-1840</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29401906</pmid><doi>10.1364/oe.26.001825</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2018-01, Vol.26 (2), p.1825-1840
issn 1094-4087
1094-4087
language eng
recordid cdi_osti_scitechconnect_1417425
source EZB Electronic Journals Library
subjects MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
Nonlinear optics
parametric processes
Quantum information and processing
Quantum optics
title 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=50-GHz-spaced%20comb%20of%20high-dimensional%20frequency-bin%20entangled%20photons%20from%20an%20on-chip%20silicon%20nitride%20microresonator&rft.jtitle=Optics%20express&rft.au=Imany,%20Poolad&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-01-22&rft.volume=26&rft.issue=2&rft.spage=1825&rft.epage=1840&rft.pages=1825-1840&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.26.001825&rft_dat=%3Cproquest_osti_%3E1995167008%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-4ad8f33f569337d5adbd49246b2309992c9cf0b2a3fe186608bdc2e00e98657f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1995167008&rft_id=info:pmid/29401906&rfr_iscdi=true