Loading…

Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film stri...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2017-07, Vol.119 (2)
Main Authors: Janantha, P. A. Praveen, Sprenger, Patrick, Hoefer, Mark A., Wu, Mingzhong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title Physical review letters
container_volume 119
creator Janantha, P. A. Praveen
Sprenger, Patrick
Hoefer, Mark A.
Wu, Mingzhong
description The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1418622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418622</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14186223</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMoWB__MLgvJFXauva9cqEgrjSGqR2tiWRivt8u_ABXF8453I5IlCzmaaHUrCsSKacqnUtZ9MWA-SGlVFleJuK6vzH6qAM5C66CAzZVutCRQovsHVY2YuPeCEviN3qmiHConXnCSUdkIAvnEDx9XrDz7cVGe4sBjnUr1tS8eCR6lW4Yx78disl6dVxsU8eBLmwooKmNsxZNuKiZKvMsm_4VfQFdq0W0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Janantha, P. A. Praveen ; Sprenger, Patrick ; Hoefer, Mark A. ; Wu, Mingzhong</creator><creatorcontrib>Janantha, P. A. Praveen ; Sprenger, Patrick ; Hoefer, Mark A. ; Wu, Mingzhong ; Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES) ; Colorado State Univ., Fort Collins, CO (United States) ; Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><description>The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>magnetic systems ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; nonlinear dynamics ; nonlinear waves ; shock waves ; spin waves</subject><ispartof>Physical review letters, 2017-07, Vol.119 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1418622$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Janantha, P. A. Praveen</creatorcontrib><creatorcontrib>Sprenger, Patrick</creatorcontrib><creatorcontrib>Hoefer, Mark A.</creatorcontrib><creatorcontrib>Wu, Mingzhong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><title>Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films</title><title>Physical review letters</title><description>The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.</description><subject>magnetic systems</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>nonlinear dynamics</subject><subject>nonlinear waves</subject><subject>shock waves</subject><subject>spin waves</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRYMoWB__MLgvJFXauva9cqEgrjSGqR2tiWRivt8u_ABXF8453I5IlCzmaaHUrCsSKacqnUtZ9MWA-SGlVFleJuK6vzH6qAM5C66CAzZVutCRQovsHVY2YuPeCEviN3qmiHConXnCSUdkIAvnEDx9XrDz7cVGe4sBjnUr1tS8eCR6lW4Yx78disl6dVxsU8eBLmwooKmNsxZNuKiZKvMsm_4VfQFdq0W0</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Janantha, P. A. Praveen</creator><creator>Sprenger, Patrick</creator><creator>Hoefer, Mark A.</creator><creator>Wu, Mingzhong</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170714</creationdate><title>Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films</title><author>Janantha, P. A. Praveen ; Sprenger, Patrick ; Hoefer, Mark A. ; Wu, Mingzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14186223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>magnetic systems</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>nonlinear dynamics</topic><topic>nonlinear waves</topic><topic>shock waves</topic><topic>spin waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janantha, P. A. Praveen</creatorcontrib><creatorcontrib>Sprenger, Patrick</creatorcontrib><creatorcontrib>Hoefer, Mark A.</creatorcontrib><creatorcontrib>Wu, Mingzhong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janantha, P. A. Praveen</au><au>Sprenger, Patrick</au><au>Hoefer, Mark A.</au><au>Wu, Mingzhong</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)</aucorp><aucorp>Colorado State Univ., Fort Collins, CO (United States)</aucorp><aucorp>Univ. of Colorado, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films</atitle><jtitle>Physical review letters</jtitle><date>2017-07-14</date><risdate>2017</risdate><volume>119</volume><issue>2</issue><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-07, Vol.119 (2)
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1418622
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects magnetic systems
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
nonlinear dynamics
nonlinear waves
shock waves
spin waves
title Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Self-Cavitating%20Envelope%20Dispersive%20Shock%20Waves%20in%20Yttrium%20Iron%20Garnet%20Thin%20Films&rft.jtitle=Physical%20review%20letters&rft.au=Janantha,%20P.%20A.%20Praveen&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Spins%20and%20Heat%20in%20Nanoscale%20Electronic%20Systems%20(SHINES)&rft.date=2017-07-14&rft.volume=119&rft.issue=2&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/&rft_dat=%3Costi%3E1418622%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_14186223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true