Loading…

Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pa...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-01, Vol.97 (3), Article 035306
Main Authors: Wu, Fengcheng, Lovorn, Timothy, MacDonald, A. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273
cites cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273
container_end_page
container_issue 3
container_start_page
container_title Physical review. B
container_volume 97
creator Wu, Fengcheng
Lovorn, Timothy
MacDonald, A. H.
description We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.
doi_str_mv 10.1103/PhysRevB.97.035306
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1419946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126930724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOOa-gE9FnzuTNE16H3X4DwRF5nNI01ub0TUzycR-e-uqPt3D5XcOh5Mk55QsKSX51Us7hFf8vFmCXJK8yIk4SmaMC8gABBz_64KcJosQNoQQKghIArME1y06P6SuSd0uWqO7VFfB-VG7Pq2G1PYRfacH9Cl-GRtdH8ZfGr3ugz1AW4yjq7am1Z1x79jbGtMWR5ur7MEZzpKTRncBF793nrzd3a5XD9nT8_3j6vopM1zQmIGsEQvBi1qaokSQvGKVITVAKTkvSU6FKXVlKK-apipYQykDlAXwQiMymc-TiynXhWhVGOuiaY3rezRRUU4BuBihywnaefexxxDVxu19P_ZSjDIBOZGMjxSbKONdCB4btfN2q_2gKFE_s6u_2RVINc2efwNjlXj2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126930724</pqid></control><display><type>article</type><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H.</creator><creatorcontrib>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.035306</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absorption ; Brillouin zones ; Chalcogenides ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Excitons ; Interlayers ; MATERIALS SCIENCE ; Momentum ; Optical activity ; Potential energy ; Quantum dots ; Transition metal compounds</subject><ispartof>Physical review. B, 2018-01, Vol.97 (3), Article 035306</ispartof><rights>Copyright American Physical Society Jan 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</citedby><cites>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1419946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fengcheng</creatorcontrib><creatorcontrib>Lovorn, Timothy</creatorcontrib><creatorcontrib>MacDonald, A. H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><title>Physical review. B</title><description>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</description><subject>Absorption</subject><subject>Brillouin zones</subject><subject>Chalcogenides</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Excitons</subject><subject>Interlayers</subject><subject>MATERIALS SCIENCE</subject><subject>Momentum</subject><subject>Optical activity</subject><subject>Potential energy</subject><subject>Quantum dots</subject><subject>Transition metal compounds</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYsoOOa-gE9FnzuTNE16H3X4DwRF5nNI01ub0TUzycR-e-uqPt3D5XcOh5Mk55QsKSX51Us7hFf8vFmCXJK8yIk4SmaMC8gABBz_64KcJosQNoQQKghIArME1y06P6SuSd0uWqO7VFfB-VG7Pq2G1PYRfacH9Cl-GRtdH8ZfGr3ugz1AW4yjq7am1Z1x79jbGtMWR5ur7MEZzpKTRncBF793nrzd3a5XD9nT8_3j6vopM1zQmIGsEQvBi1qaokSQvGKVITVAKTkvSU6FKXVlKK-apipYQykDlAXwQiMymc-TiynXhWhVGOuiaY3rezRRUU4BuBihywnaefexxxDVxu19P_ZSjDIBOZGMjxSbKONdCB4btfN2q_2gKFE_s6u_2RVINc2efwNjlXj2</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Wu, Fengcheng</creator><creator>Lovorn, Timothy</creator><creator>MacDonald, A. H.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180122</creationdate><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><author>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Brillouin zones</topic><topic>Chalcogenides</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Excitons</topic><topic>Interlayers</topic><topic>MATERIALS SCIENCE</topic><topic>Momentum</topic><topic>Optical activity</topic><topic>Potential energy</topic><topic>Quantum dots</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fengcheng</creatorcontrib><creatorcontrib>Lovorn, Timothy</creatorcontrib><creatorcontrib>MacDonald, A. H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fengcheng</au><au>Lovorn, Timothy</au><au>MacDonald, A. H.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</atitle><jtitle>Physical review. B</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>97</volume><issue>3</issue><artnum>035306</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.035306</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-01, Vol.97 (3), Article 035306
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1419946
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Absorption
Brillouin zones
Chalcogenides
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Excitons
Interlayers
MATERIALS SCIENCE
Momentum
Optical activity
Potential energy
Quantum dots
Transition metal compounds
title Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20optical%20absorption%20by%20interlayer%20excitons%20in%20transition%20metal%20dichalcogenide%20heterobilayers&rft.jtitle=Physical%20review.%20B&rft.au=Wu,%20Fengcheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-22&rft.volume=97&rft.issue=3&rft.artnum=035306&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.035306&rft_dat=%3Cproquest_osti_%3E2126930724%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126930724&rft_id=info:pmid/&rfr_iscdi=true