Loading…
Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers
We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pa...
Saved in:
Published in: | Physical review. B 2018-01, Vol.97 (3), Article 035306 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Wu, Fengcheng Lovorn, Timothy MacDonald, A. H. |
description | We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots. |
doi_str_mv | 10.1103/PhysRevB.97.035306 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1419946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126930724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOOa-gE9FnzuTNE16H3X4DwRF5nNI01ub0TUzycR-e-uqPt3D5XcOh5Mk55QsKSX51Us7hFf8vFmCXJK8yIk4SmaMC8gABBz_64KcJosQNoQQKghIArME1y06P6SuSd0uWqO7VFfB-VG7Pq2G1PYRfacH9Cl-GRtdH8ZfGr3ugz1AW4yjq7am1Z1x79jbGtMWR5ur7MEZzpKTRncBF793nrzd3a5XD9nT8_3j6vopM1zQmIGsEQvBi1qaokSQvGKVITVAKTkvSU6FKXVlKK-apipYQykDlAXwQiMymc-TiynXhWhVGOuiaY3rezRRUU4BuBihywnaefexxxDVxu19P_ZSjDIBOZGMjxSbKONdCB4btfN2q_2gKFE_s6u_2RVINc2efwNjlXj2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126930724</pqid></control><display><type>article</type><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H.</creator><creatorcontrib>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.035306</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absorption ; Brillouin zones ; Chalcogenides ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Excitons ; Interlayers ; MATERIALS SCIENCE ; Momentum ; Optical activity ; Potential energy ; Quantum dots ; Transition metal compounds</subject><ispartof>Physical review. B, 2018-01, Vol.97 (3), Article 035306</ispartof><rights>Copyright American Physical Society Jan 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</citedby><cites>FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1419946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fengcheng</creatorcontrib><creatorcontrib>Lovorn, Timothy</creatorcontrib><creatorcontrib>MacDonald, A. H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><title>Physical review. B</title><description>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</description><subject>Absorption</subject><subject>Brillouin zones</subject><subject>Chalcogenides</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Excitons</subject><subject>Interlayers</subject><subject>MATERIALS SCIENCE</subject><subject>Momentum</subject><subject>Optical activity</subject><subject>Potential energy</subject><subject>Quantum dots</subject><subject>Transition metal compounds</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYsoOOa-gE9FnzuTNE16H3X4DwRF5nNI01ub0TUzycR-e-uqPt3D5XcOh5Mk55QsKSX51Us7hFf8vFmCXJK8yIk4SmaMC8gABBz_64KcJosQNoQQKghIArME1y06P6SuSd0uWqO7VFfB-VG7Pq2G1PYRfacH9Cl-GRtdH8ZfGr3ugz1AW4yjq7am1Z1x79jbGtMWR5ur7MEZzpKTRncBF793nrzd3a5XD9nT8_3j6vopM1zQmIGsEQvBi1qaokSQvGKVITVAKTkvSU6FKXVlKK-apipYQykDlAXwQiMymc-TiynXhWhVGOuiaY3rezRRUU4BuBihywnaefexxxDVxu19P_ZSjDIBOZGMjxSbKONdCB4btfN2q_2gKFE_s6u_2RVINc2efwNjlXj2</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Wu, Fengcheng</creator><creator>Lovorn, Timothy</creator><creator>MacDonald, A. H.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180122</creationdate><title>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</title><author>Wu, Fengcheng ; Lovorn, Timothy ; MacDonald, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Brillouin zones</topic><topic>Chalcogenides</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Excitons</topic><topic>Interlayers</topic><topic>MATERIALS SCIENCE</topic><topic>Momentum</topic><topic>Optical activity</topic><topic>Potential energy</topic><topic>Quantum dots</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fengcheng</creatorcontrib><creatorcontrib>Lovorn, Timothy</creatorcontrib><creatorcontrib>MacDonald, A. H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fengcheng</au><au>Lovorn, Timothy</au><au>MacDonald, A. H.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers</atitle><jtitle>Physical review. B</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>97</volume><issue>3</issue><artnum>035306</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.035306</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-01, Vol.97 (3), Article 035306 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1419946 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Absorption Brillouin zones Chalcogenides CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Excitons Interlayers MATERIALS SCIENCE Momentum Optical activity Potential energy Quantum dots Transition metal compounds |
title | Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20optical%20absorption%20by%20interlayer%20excitons%20in%20transition%20metal%20dichalcogenide%20heterobilayers&rft.jtitle=Physical%20review.%20B&rft.au=Wu,%20Fengcheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-22&rft.volume=97&rft.issue=3&rft.artnum=035306&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.035306&rft_dat=%3Cproquest_osti_%3E2126930724%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-97dee5645d7c58e974b2bc0d99874480316c8abc14bffb52f1129e75945aee273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126930724&rft_id=info:pmid/&rfr_iscdi=true |