Loading…
Ensemble averaged structure-function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin
Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster−bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the struc...
Saved in:
Published in: | Nanoscale 2017-10, Vol.9 (4), p.1555-15514 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster−bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure-function relationship for metallic NCs is to be quantified precisely. We address the question by studying bi-functional Fe core−Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction, respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Thus we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure-function relationship for the increasingly complex metallic NCs explored for practical applications.
Ensemble-averaged 3D positions of atoms are a very proper basis for not only establishing but also quantifying the structure-function relationship for nanocrystals. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr05768g |