Loading…
Avalanches and Criticality in Driven Magnetic Skyrmions
We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a un...
Saved in:
Published in: | Physical review letters 2018-03, Vol.120 (11), p.117203-117203, Article 117203 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.120.117203 |