Loading…
Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric ener...
Saved in:
Published in: | International journal of hydrogen energy 2018-01, Vol.43 (2), p.817-830 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3 |
container_end_page | 830 |
container_issue | 2 |
container_start_page | 817 |
container_title | International journal of hydrogen energy |
container_volume | 43 |
creator | d'Entremont, Anna Corgnale, Claudio Hardy, Bruce Zidan, Ragaiy |
description | Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.
•A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified. |
doi_str_mv | 10.1016/j.ijhydene.2017.11.100 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1426658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319917344804</els_id><sourcerecordid>S0360319917344804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</originalsourceid><addsrcrecordid>eNqFkEtPxCAcxInRxPXxFQzx3hX6oPSm2fhKNvGgngmlf7Y0bWmAXdObH12a1bMnyOQ3MzAI3VCypoSyu25tunZuYIR1Smi5pjTq5AStKC-rJMt5eYpWJGMkyWhVnaML7zsSQZJXK_T9boZ9L4OxI7Yat2bX4gDDBE6GvQMcWnCD7HFMd7sZ-2Cd3AH2s48UrqWHBkersvupj9cBQoTja5xpwGNtHfa2lw5H4QBj9IMc8GS_wOGpl2PwV-hMy97D9e95iT6fHj82L8n27fl187BNVJ6ykJQ5A6mJpjlUaZ6RNE0BKCVKlVmRMS55XWhogHGqy5QD4aUsVV0XwOsctMou0e0x1_pghFcmgGqVHUdQQdDYwQoeIXaElLPeO9BicmaQbhaUiGVs0Ym_scUytqA06iQa749GiF84GHBLA4wKGuOWgsaa_yJ-AC8fj00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><source>ScienceDirect Journals</source><creator>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy</creator><creatorcontrib>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy ; Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><description>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.
•A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2017.11.100</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>ENERGY STORAGE ; ENVIRONMENTAL SCIENCES ; High temperature ; Hydrogen storage ; Metal hydrides ; SOLAR ENERGY ; Solar power plants ; Thermal energy storage ; Transport models</subject><ispartof>International journal of hydrogen energy, 2018-01, Vol.43 (2), p.817-830</ispartof><rights>2017 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</citedby><cites>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1426658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>d'Entremont, Anna</creatorcontrib><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Hardy, Bruce</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><title>International journal of hydrogen energy</title><description>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.
•A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</description><subject>ENERGY STORAGE</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>High temperature</subject><subject>Hydrogen storage</subject><subject>Metal hydrides</subject><subject>SOLAR ENERGY</subject><subject>Solar power plants</subject><subject>Thermal energy storage</subject><subject>Transport models</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPxCAcxInRxPXxFQzx3hX6oPSm2fhKNvGgngmlf7Y0bWmAXdObH12a1bMnyOQ3MzAI3VCypoSyu25tunZuYIR1Smi5pjTq5AStKC-rJMt5eYpWJGMkyWhVnaML7zsSQZJXK_T9boZ9L4OxI7Yat2bX4gDDBE6GvQMcWnCD7HFMd7sZ-2Cd3AH2s48UrqWHBkersvupj9cBQoTja5xpwGNtHfa2lw5H4QBj9IMc8GS_wOGpl2PwV-hMy97D9e95iT6fHj82L8n27fl187BNVJ6ykJQ5A6mJpjlUaZ6RNE0BKCVKlVmRMS55XWhogHGqy5QD4aUsVV0XwOsctMou0e0x1_pghFcmgGqVHUdQQdDYwQoeIXaElLPeO9BicmaQbhaUiGVs0Ym_scUytqA06iQa749GiF84GHBLA4wKGuOWgsaa_yJ-AC8fj00</recordid><startdate>20180111</startdate><enddate>20180111</enddate><creator>d'Entremont, Anna</creator><creator>Corgnale, Claudio</creator><creator>Hardy, Bruce</creator><creator>Zidan, Ragaiy</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180111</creationdate><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><author>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>High temperature</topic><topic>Hydrogen storage</topic><topic>Metal hydrides</topic><topic>SOLAR ENERGY</topic><topic>Solar power plants</topic><topic>Thermal energy storage</topic><topic>Transport models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>d'Entremont, Anna</creatorcontrib><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Hardy, Bruce</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>d'Entremont, Anna</au><au>Corgnale, Claudio</au><au>Hardy, Bruce</au><au>Zidan, Ragaiy</au><aucorp>Savannah River Site (SRS), Aiken, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2018-01-11</date><risdate>2018</risdate><volume>43</volume><issue>2</issue><spage>817</spage><epage>830</epage><pages>817-830</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.
•A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2017.11.100</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2018-01, Vol.43 (2), p.817-830 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_osti_scitechconnect_1426658 |
source | ScienceDirect Journals |
subjects | ENERGY STORAGE ENVIRONMENTAL SCIENCES High temperature Hydrogen storage Metal hydrides SOLAR ENERGY Solar power plants Thermal energy storage Transport models |
title | Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20high%20temperature%20thermal%20energy%20storage%20system%20based%20on%20coupled%20metal%20hydrides%20for%20solar%20driven%20steam%20power%20plants&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=d'Entremont,%20Anna&rft.aucorp=Savannah%20River%20Site%20(SRS),%20Aiken,%20SC%20(United%20States)&rft.date=2018-01-11&rft.volume=43&rft.issue=2&rft.spage=817&rft.epage=830&rft.pages=817-830&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2017.11.100&rft_dat=%3Celsevier_osti_%3ES0360319917344804%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |