Loading…

Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants

Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric ener...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2018-01, Vol.43 (2), p.817-830
Main Authors: d'Entremont, Anna, Corgnale, Claudio, Hardy, Bruce, Zidan, Ragaiy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3
cites cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3
container_end_page 830
container_issue 2
container_start_page 817
container_title International journal of hydrogen energy
container_volume 43
creator d'Entremont, Anna
Corgnale, Claudio
Hardy, Bruce
Zidan, Ragaiy
description Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies. •A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.
doi_str_mv 10.1016/j.ijhydene.2017.11.100
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1426658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319917344804</els_id><sourcerecordid>S0360319917344804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</originalsourceid><addsrcrecordid>eNqFkEtPxCAcxInRxPXxFQzx3hX6oPSm2fhKNvGgngmlf7Y0bWmAXdObH12a1bMnyOQ3MzAI3VCypoSyu25tunZuYIR1Smi5pjTq5AStKC-rJMt5eYpWJGMkyWhVnaML7zsSQZJXK_T9boZ9L4OxI7Yat2bX4gDDBE6GvQMcWnCD7HFMd7sZ-2Cd3AH2s48UrqWHBkersvupj9cBQoTja5xpwGNtHfa2lw5H4QBj9IMc8GS_wOGpl2PwV-hMy97D9e95iT6fHj82L8n27fl187BNVJ6ykJQ5A6mJpjlUaZ6RNE0BKCVKlVmRMS55XWhogHGqy5QD4aUsVV0XwOsctMou0e0x1_pghFcmgGqVHUdQQdDYwQoeIXaElLPeO9BicmaQbhaUiGVs0Ym_scUytqA06iQa749GiF84GHBLA4wKGuOWgsaa_yJ-AC8fj00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><source>ScienceDirect Journals</source><creator>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy</creator><creatorcontrib>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy ; Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><description>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies. •A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2017.11.100</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>ENERGY STORAGE ; ENVIRONMENTAL SCIENCES ; High temperature ; Hydrogen storage ; Metal hydrides ; SOLAR ENERGY ; Solar power plants ; Thermal energy storage ; Transport models</subject><ispartof>International journal of hydrogen energy, 2018-01, Vol.43 (2), p.817-830</ispartof><rights>2017 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</citedby><cites>FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1426658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>d'Entremont, Anna</creatorcontrib><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Hardy, Bruce</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><title>International journal of hydrogen energy</title><description>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies. •A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</description><subject>ENERGY STORAGE</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>High temperature</subject><subject>Hydrogen storage</subject><subject>Metal hydrides</subject><subject>SOLAR ENERGY</subject><subject>Solar power plants</subject><subject>Thermal energy storage</subject><subject>Transport models</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPxCAcxInRxPXxFQzx3hX6oPSm2fhKNvGgngmlf7Y0bWmAXdObH12a1bMnyOQ3MzAI3VCypoSyu25tunZuYIR1Smi5pjTq5AStKC-rJMt5eYpWJGMkyWhVnaML7zsSQZJXK_T9boZ9L4OxI7Yat2bX4gDDBE6GvQMcWnCD7HFMd7sZ-2Cd3AH2s48UrqWHBkersvupj9cBQoTja5xpwGNtHfa2lw5H4QBj9IMc8GS_wOGpl2PwV-hMy97D9e95iT6fHj82L8n27fl187BNVJ6ykJQ5A6mJpjlUaZ6RNE0BKCVKlVmRMS55XWhogHGqy5QD4aUsVV0XwOsctMou0e0x1_pghFcmgGqVHUdQQdDYwQoeIXaElLPeO9BicmaQbhaUiGVs0Ym_scUytqA06iQa749GiF84GHBLA4wKGuOWgsaa_yJ-AC8fj00</recordid><startdate>20180111</startdate><enddate>20180111</enddate><creator>d'Entremont, Anna</creator><creator>Corgnale, Claudio</creator><creator>Hardy, Bruce</creator><creator>Zidan, Ragaiy</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180111</creationdate><title>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</title><author>d'Entremont, Anna ; Corgnale, Claudio ; Hardy, Bruce ; Zidan, Ragaiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>High temperature</topic><topic>Hydrogen storage</topic><topic>Metal hydrides</topic><topic>SOLAR ENERGY</topic><topic>Solar power plants</topic><topic>Thermal energy storage</topic><topic>Transport models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>d'Entremont, Anna</creatorcontrib><creatorcontrib>Corgnale, Claudio</creatorcontrib><creatorcontrib>Hardy, Bruce</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>d'Entremont, Anna</au><au>Corgnale, Claudio</au><au>Hardy, Bruce</au><au>Zidan, Ragaiy</au><aucorp>Savannah River Site (SRS), Aiken, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2018-01-11</date><risdate>2018</risdate><volume>43</volume><issue>2</issue><spage>817</spage><epage>830</epage><pages>817-830</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH2F hydride paired with TiCr1.6Mn0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accounting for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. In addition, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies. •A metal hydride storage system identified for supercritical steam power plant.•A laboratory scale thermal energy storage system modeled.•Technical feasibility of the system demonstrated, with recovery of waste heat.•Achieved temperatures of 600–650 °C, energy densities 9 times the DOE target.•Heat transfer system enhancements identified.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2017.11.100</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2018-01, Vol.43 (2), p.817-830
issn 0360-3199
1879-3487
language eng
recordid cdi_osti_scitechconnect_1426658
source ScienceDirect Journals
subjects ENERGY STORAGE
ENVIRONMENTAL SCIENCES
High temperature
Hydrogen storage
Metal hydrides
SOLAR ENERGY
Solar power plants
Thermal energy storage
Transport models
title Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20high%20temperature%20thermal%20energy%20storage%20system%20based%20on%20coupled%20metal%20hydrides%20for%20solar%20driven%20steam%20power%20plants&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=d'Entremont,%20Anna&rft.aucorp=Savannah%20River%20Site%20(SRS),%20Aiken,%20SC%20(United%20States)&rft.date=2018-01-11&rft.volume=43&rft.issue=2&rft.spage=817&rft.epage=830&rft.pages=817-830&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2017.11.100&rft_dat=%3Celsevier_osti_%3ES0360319917344804%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-746eaf0f14e92430222ee110cc735368a8b5fede681f728e087a7cbb5e8b4efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true