Loading…

Neutron Scattering Studies of the Hydration Structure of Li

New results derived from the experimental method of neutron diffraction and isotopic substitution (NDIS) are presented for the hydration structure of the lithium cation (Li+) in aqueous solutions of lithium chloride in heavy water (D2O) at concentrations of 6, 3, and 1 m and at 1.5 m lithium sulfate...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2015-02, Vol.119 (5), p.2003-2009
Main Authors: Mason, P. E, Ansell, S, Neilson, G. W, Rempe, S. B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New results derived from the experimental method of neutron diffraction and isotopic substitution (NDIS) are presented for the hydration structure of the lithium cation (Li+) in aqueous solutions of lithium chloride in heavy water (D2O) at concentrations of 6, 3, and 1 m and at 1.5 m lithium sulfate. By introducing new and more-accurate data reduction procedures than in our earlier studies (I. Howell and G. W. Neilson, J. Phys: Condens. Matter, 1996, 8, 4455–4463), we find, in the first hydration shell of Li+, ∼4.3(2) water molecules at 6 m, 4.9(3) at 3 m, 4.8(3) at 1 m in the LiCl solutions, and 5.0(3) water molecules in the case of Li2SO4 solution. The general form of the first hydration shell is similar in all four solutions, with the correlations for Li–O and Li–D sited at 1.96 (0.02) Å and 2.58 (0.02) Å, respectively. The results resemble those presented in 1996, in terms of ion–water distances and local coordination, but the hydration number is significantly lower for the case at 1 m than the 6.5 (1.0) given at that time. Thus, experimental and theoretical results now agree that lithium is hydrated by a small number of water molecules (4–5) in the nearest coordination shell.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp511508n