Loading…
Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates
The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B–H} + {C–H} vertices and an additional num...
Saved in:
Published in: | Chemistry of materials 2017-12, Vol.29 (24), p.10496-10509 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3 |
container_end_page | 10509 |
container_issue | 24 |
container_start_page | 10496 |
container_title | Chemistry of materials |
container_volume | 29 |
creator | Tang, Wan Si Dimitrievska, Mirjana Stavila, Vitalie Zhou, Wei Wu, Hui Talin, A. Alec Udovic, Terrence J |
description | The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B–H} + {C–H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order–disorder phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ∼1010 jumps s–1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB9H10 – and CB11H12 – closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity. |
doi_str_mv | 10.1021/acs.chemmater.7b04332 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1431414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b395784878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIARXupiay2QuS6lXKHTRdh0zudAUJylJRujOd_ANfRJTWty6ORfO-Q__-QC4xmiCEcH3QsaJXOu-F0mHSd2hklJyAkaYEVQwhMgpGKGmrYuyZtU5uIhxgxDO0mYE3udB6fDz9f1oo9-XcBmEizZZ7yIUTsHFsNUhd1bCqXdqkMl-2rSD1sG01nDhlR166KzyxcopLcWtFKETd50P2U-8BGdGfER9dcxjsHp-Wk5fi9n85W36MCsErdpUVMbUDcleqRaMtdKYrkOkpZVpUF2qjhnUYVUrQhtscIWIFm0eacN0SyU1dAxuDnd9TJZHaZOWa-md0zJxXFJc5jAG7LAkg48xaMO3wfYi7DhGfM-SZ5b8jyU_ssw6fNDtxxs_BJdf-UfzC9SSftE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Wan Si ; Dimitrievska, Mirjana ; Stavila, Vitalie ; Zhou, Wei ; Wu, Hui ; Talin, A. Alec ; Udovic, Terrence J</creator><creatorcontrib>Tang, Wan Si ; Dimitrievska, Mirjana ; Stavila, Vitalie ; Zhou, Wei ; Wu, Hui ; Talin, A. Alec ; Udovic, Terrence J ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B–H} + {C–H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order–disorder phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ∼1010 jumps s–1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB9H10 – and CB11H12 – closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b04332</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carbon ; differential scanning calorimetry ; electrochemical impedance spectroscopy ; ionic conductivity ; MATERIALS SCIENCE ; negative ions ; neutron scattering</subject><ispartof>Chemistry of materials, 2017-12, Vol.29 (24), p.10496-10509</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3</citedby><cites>FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3</cites><orcidid>0000-0002-9439-1019 ; 0000-0002-1102-680X ; 0000-0002-5461-3617 ; 0000-0003-0296-5204 ; 0000-0002-9453-2483 ; 0000000294532483 ; 0000000254613617 ; 0000000294391019 ; 0000000302965204 ; 000000021102680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1431414$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Wan Si</creatorcontrib><creatorcontrib>Dimitrievska, Mirjana</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Wu, Hui</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Udovic, Terrence J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B–H} + {C–H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order–disorder phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ∼1010 jumps s–1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB9H10 – and CB11H12 – closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.</description><subject>carbon</subject><subject>differential scanning calorimetry</subject><subject>electrochemical impedance spectroscopy</subject><subject>ionic conductivity</subject><subject>MATERIALS SCIENCE</subject><subject>negative ions</subject><subject>neutron scattering</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIARXupiay2QuS6lXKHTRdh0zudAUJylJRujOd_ANfRJTWty6ORfO-Q__-QC4xmiCEcH3QsaJXOu-F0mHSd2hklJyAkaYEVQwhMgpGKGmrYuyZtU5uIhxgxDO0mYE3udB6fDz9f1oo9-XcBmEizZZ7yIUTsHFsNUhd1bCqXdqkMl-2rSD1sG01nDhlR166KzyxcopLcWtFKETd50P2U-8BGdGfER9dcxjsHp-Wk5fi9n85W36MCsErdpUVMbUDcleqRaMtdKYrkOkpZVpUF2qjhnUYVUrQhtscIWIFm0eacN0SyU1dAxuDnd9TJZHaZOWa-md0zJxXFJc5jAG7LAkg48xaMO3wfYi7DhGfM-SZ5b8jyU_ssw6fNDtxxs_BJdf-UfzC9SSftE</recordid><startdate>20171226</startdate><enddate>20171226</enddate><creator>Tang, Wan Si</creator><creator>Dimitrievska, Mirjana</creator><creator>Stavila, Vitalie</creator><creator>Zhou, Wei</creator><creator>Wu, Hui</creator><creator>Talin, A. Alec</creator><creator>Udovic, Terrence J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9439-1019</orcidid><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0002-5461-3617</orcidid><orcidid>https://orcid.org/0000-0003-0296-5204</orcidid><orcidid>https://orcid.org/0000-0002-9453-2483</orcidid><orcidid>https://orcid.org/0000000294532483</orcidid><orcidid>https://orcid.org/0000000254613617</orcidid><orcidid>https://orcid.org/0000000294391019</orcidid><orcidid>https://orcid.org/0000000302965204</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid></search><sort><creationdate>20171226</creationdate><title>Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates</title><author>Tang, Wan Si ; Dimitrievska, Mirjana ; Stavila, Vitalie ; Zhou, Wei ; Wu, Hui ; Talin, A. Alec ; Udovic, Terrence J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>carbon</topic><topic>differential scanning calorimetry</topic><topic>electrochemical impedance spectroscopy</topic><topic>ionic conductivity</topic><topic>MATERIALS SCIENCE</topic><topic>negative ions</topic><topic>neutron scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Wan Si</creatorcontrib><creatorcontrib>Dimitrievska, Mirjana</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Wu, Hui</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Udovic, Terrence J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Wan Si</au><au>Dimitrievska, Mirjana</au><au>Stavila, Vitalie</au><au>Zhou, Wei</au><au>Wu, Hui</au><au>Talin, A. Alec</au><au>Udovic, Terrence J</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-12-26</date><risdate>2017</risdate><volume>29</volume><issue>24</issue><spage>10496</spage><epage>10509</epage><pages>10496-10509</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The salt compounds NaB11H14, Na-7-CB10H13, Li-7-CB10H13, Na-7,8-C2B9H12, and Na-7,9-C2B9H12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B–H} + {C–H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order–disorder phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ∼1010 jumps s–1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB9H10 – and CB11H12 – closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b04332</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9439-1019</orcidid><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0002-5461-3617</orcidid><orcidid>https://orcid.org/0000-0003-0296-5204</orcidid><orcidid>https://orcid.org/0000-0002-9453-2483</orcidid><orcidid>https://orcid.org/0000000294532483</orcidid><orcidid>https://orcid.org/0000000254613617</orcidid><orcidid>https://orcid.org/0000000294391019</orcidid><orcidid>https://orcid.org/0000000302965204</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2017-12, Vol.29 (24), p.10496-10509 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1431414 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | carbon differential scanning calorimetry electrochemical impedance spectroscopy ionic conductivity MATERIALS SCIENCE negative ions neutron scattering |
title | Order–Disorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%E2%80%93Disorder%20Transitions%20and%20Superionic%20Conductivity%20in%20the%20Sodium%20nido-Undeca(carba)borates&rft.jtitle=Chemistry%20of%20materials&rft.au=Tang,%20Wan%20Si&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-12-26&rft.volume=29&rft.issue=24&rft.spage=10496&rft.epage=10509&rft.pages=10496-10509&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b04332&rft_dat=%3Cacs_osti_%3Eb395784878%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-6ff7820023ea559cffbb02936f8074db5f0b1d7d2381f1602ea9f80ef5e93c3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |