Loading…

Effects of Sc and Y substitution on the structure and thermoelectric properties of Yb14MnSb11

Yb14MnSb11 is the most efficient bulk p-type thermoelectric material for high temperature applications. Materials with Y and Sc substitutions in Yb14MnSb11 were made both in Sn-flux and by ball milling. These small 3+ rare earth (RE) cations were introduced with the goal of providing chemical pressu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 2016-10, Vol.242 (P2), p.55-61
Main Authors: Grebenkemper, Jason H., Klemenz, Sebastian, Albert, Barbara, Bux, Sabah K., Kauzlarich, Susan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yb14MnSb11 is the most efficient bulk p-type thermoelectric material for high temperature applications. Materials with Y and Sc substitutions in Yb14MnSb11 were made both in Sn-flux and by ball milling. These small 3+ rare earth (RE) cations were introduced with the goal of providing chemical pressure on the structure. The RE3+ cation is smaller than Yb2+ and also donates one additional electron to this p-type semiconductor. In Yb14−xRExMnSb11 (RE = Sc, Y) the maximum x was about 0.5. X-ray diffraction experiments on the single crystals obtained from Sn-flux showed that Sc preferentially substitutes for Yb(1) and Yb(3), and decreases the size of the unit cell by about 0.3%. Y substitutes on all Yb sites and increases the size of the unit cell by about 0.2%. Samples with Yb14−xRExMnSb11 (x~0.3) were prepared via powder metallurgy and spark plasma sintering for transport and thermal conductivity measurements. Electron microprobe of the Sc-substituted sample showed small regions (≤1 μm) containing greater amounts of Sc, and X-ray powder diffraction of the ball milled Sc sample could be fitted as phase pure Yb14−xScxMnSb11. Y-substituted samples showed larger regions of excess Y in electron microprobe, and small amounts of Yb4Sb3 in X-ray powder diffraction. The Sc sample has slightly reduced carrier concentration over optimized Yb14MnSb11, while the Y samples have even lower carrier concentrations. These carrier concentrations lead to comparable resistivity to Yb14MnSb11 in the Sc-substituted material, and higher resistivities in the Y-substituted material. All materials had similar Seebeck coefficients that slightly exceed Yb14MnSb11 at high temperatures, with the Sc-substituted sample having the highest despite having a higher carrier concentration. Sc-substituted samples also had a slightly higher thermal conductivity over the Y-substituted samples, which had comparable thermal conductivity to Yb14MnSb11. The zT values of the Sc and Y substituted samples are similar (zT1000K~0.8), however below that of Yb14MnSb11 due to the compensation of Seebeck and resistivity. Chemical pressure of the Sc substituted Yb14MnSb11 provides a viable method for enhancing the Seebeck coefficient. [Display omitted] •Yb14−xRExMnSb11 (RE=Sc, Y) were synthesized from Sn flux and stoichiometric powders.•Sc substitution decreases the size of the unit cell while Y increases it.•Sc substitution slightly reduces carrier concentration and Y decreases it further.•Y substitution results
ISSN:0022-4596
1095-726X
DOI:10.1016/j.jssc.2016.03.015