Loading…
High temperature nanoindentation: The state of the art and future challenges
•Detailed review of technical advances for high temperature nanoindentation.•Methods for avoiding and correcting thermal drift displacements are described.•Vacuum and in situ nanoindentation techniques at high temperature are discussed.•Several emerging high temperature nanoindentation techniques ar...
Saved in:
Published in: | Current opinion in solid state & materials science 2015-12, Vol.19 (6), p.354-366 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83 |
container_end_page | 366 |
container_issue | 6 |
container_start_page | 354 |
container_title | Current opinion in solid state & materials science |
container_volume | 19 |
creator | Wheeler, J.M. Armstrong, D.E.J. Heinz, W. Schwaiger, R. |
description | •Detailed review of technical advances for high temperature nanoindentation.•Methods for avoiding and correcting thermal drift displacements are described.•Vacuum and in situ nanoindentation techniques at high temperature are discussed.•Several emerging high temperature nanoindentation techniques are illustrated.
Nanoindentation measurement capabilities at elevated temperatures have developed considerably over the last two decades. Commercially available systems can now perform stable indentation testing at temperatures up to ∼800°C with thermal drift levels similar to those present at room temperature. The thermal management and measurement techniques necessary to achieve this are discussed here, with particular emphasis on systems featuring independent heating of both the indenter and the sample. To enable measurements at temperatures where oxidation of the indenter and/or sample are a concern, vacuum nanoindentation techniques have also been developed. A natural extension of testing in vacuo is elevated temperature nanoindentation in situ in the scanning electron microscope, and the additional requirements for and benefits of this are discussed. Finally, several new emerging testing techniques are introduced: thermal cycling/fatigue, interfacial thermal resistance measurement and small scale transient plasticity measurements. |
doi_str_mv | 10.1016/j.cossms.2015.02.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359028615000145</els_id><sourcerecordid>1770299686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhbtQcHz8AxfFlZvWvJo2LgQZ1BEG3Mw-pOnNNEObjEkq-O_tWNeuLgfOOZz7ZdktRiVGmD8cSu1jHGNJEK5KREqEyFm2wrQSBSINv8guYzwghBjnfJVtN3bf5wnGIwSVpgC5U85b14FLKlnvHvNdD3mcBeTe5GkWKqRcuS43029A92oYwO0hXmfnRg0Rbv7uVbZ7fdmtN8X24-19_bwtdMWaVNSCca0qVuOqBdoxrRUyHITCrTBYtx2lpK4bQxmjwlBSMdESRmhLKmrahl5ld0utj8nKqG0C3WvvHOgkMaNM1GQ23S-mY_CfE8QkRxs1DINy4KcocV0jIgRv-Gxli1WHGV0AI4_Bjip8S4zkCao8yAWqPEGViMgZ6hx7WmIwv_plIZymgNPQ2XBa0nn7f8EPFf6Dtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770299686</pqid></control><display><type>article</type><title>High temperature nanoindentation: The state of the art and future challenges</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wheeler, J.M. ; Armstrong, D.E.J. ; Heinz, W. ; Schwaiger, R.</creator><creatorcontrib>Wheeler, J.M. ; Armstrong, D.E.J. ; Heinz, W. ; Schwaiger, R.</creatorcontrib><description>•Detailed review of technical advances for high temperature nanoindentation.•Methods for avoiding and correcting thermal drift displacements are described.•Vacuum and in situ nanoindentation techniques at high temperature are discussed.•Several emerging high temperature nanoindentation techniques are illustrated.
Nanoindentation measurement capabilities at elevated temperatures have developed considerably over the last two decades. Commercially available systems can now perform stable indentation testing at temperatures up to ∼800°C with thermal drift levels similar to those present at room temperature. The thermal management and measurement techniques necessary to achieve this are discussed here, with particular emphasis on systems featuring independent heating of both the indenter and the sample. To enable measurements at temperatures where oxidation of the indenter and/or sample are a concern, vacuum nanoindentation techniques have also been developed. A natural extension of testing in vacuo is elevated temperature nanoindentation in situ in the scanning electron microscope, and the additional requirements for and benefits of this are discussed. Finally, several new emerging testing techniques are introduced: thermal cycling/fatigue, interfacial thermal resistance measurement and small scale transient plasticity measurements.</description><identifier>ISSN: 1359-0286</identifier><identifier>DOI: 10.1016/j.cossms.2015.02.002</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Heating ; High temperature ; In situ ; Indenters ; Microcompression ; Nanoindentation ; Scanning electron microscopy ; Thermal cycling ; Thermal management ; Thermal resistance</subject><ispartof>Current opinion in solid state & materials science, 2015-12, Vol.19 (6), p.354-366</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83</citedby><cites>FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1434972$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wheeler, J.M.</creatorcontrib><creatorcontrib>Armstrong, D.E.J.</creatorcontrib><creatorcontrib>Heinz, W.</creatorcontrib><creatorcontrib>Schwaiger, R.</creatorcontrib><title>High temperature nanoindentation: The state of the art and future challenges</title><title>Current opinion in solid state & materials science</title><description>•Detailed review of technical advances for high temperature nanoindentation.•Methods for avoiding and correcting thermal drift displacements are described.•Vacuum and in situ nanoindentation techniques at high temperature are discussed.•Several emerging high temperature nanoindentation techniques are illustrated.
Nanoindentation measurement capabilities at elevated temperatures have developed considerably over the last two decades. Commercially available systems can now perform stable indentation testing at temperatures up to ∼800°C with thermal drift levels similar to those present at room temperature. The thermal management and measurement techniques necessary to achieve this are discussed here, with particular emphasis on systems featuring independent heating of both the indenter and the sample. To enable measurements at temperatures where oxidation of the indenter and/or sample are a concern, vacuum nanoindentation techniques have also been developed. A natural extension of testing in vacuo is elevated temperature nanoindentation in situ in the scanning electron microscope, and the additional requirements for and benefits of this are discussed. Finally, several new emerging testing techniques are introduced: thermal cycling/fatigue, interfacial thermal resistance measurement and small scale transient plasticity measurements.</description><subject>Heating</subject><subject>High temperature</subject><subject>In situ</subject><subject>Indenters</subject><subject>Microcompression</subject><subject>Nanoindentation</subject><subject>Scanning electron microscopy</subject><subject>Thermal cycling</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><issn>1359-0286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhbtQcHz8AxfFlZvWvJo2LgQZ1BEG3Mw-pOnNNEObjEkq-O_tWNeuLgfOOZz7ZdktRiVGmD8cSu1jHGNJEK5KREqEyFm2wrQSBSINv8guYzwghBjnfJVtN3bf5wnGIwSVpgC5U85b14FLKlnvHvNdD3mcBeTe5GkWKqRcuS43029A92oYwO0hXmfnRg0Rbv7uVbZ7fdmtN8X24-19_bwtdMWaVNSCca0qVuOqBdoxrRUyHITCrTBYtx2lpK4bQxmjwlBSMdESRmhLKmrahl5ld0utj8nKqG0C3WvvHOgkMaNM1GQ23S-mY_CfE8QkRxs1DINy4KcocV0jIgRv-Gxli1WHGV0AI4_Bjip8S4zkCao8yAWqPEGViMgZ6hx7WmIwv_plIZymgNPQ2XBa0nn7f8EPFf6Dtg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wheeler, J.M.</creator><creator>Armstrong, D.E.J.</creator><creator>Heinz, W.</creator><creator>Schwaiger, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>High temperature nanoindentation: The state of the art and future challenges</title><author>Wheeler, J.M. ; Armstrong, D.E.J. ; Heinz, W. ; Schwaiger, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Heating</topic><topic>High temperature</topic><topic>In situ</topic><topic>Indenters</topic><topic>Microcompression</topic><topic>Nanoindentation</topic><topic>Scanning electron microscopy</topic><topic>Thermal cycling</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheeler, J.M.</creatorcontrib><creatorcontrib>Armstrong, D.E.J.</creatorcontrib><creatorcontrib>Heinz, W.</creatorcontrib><creatorcontrib>Schwaiger, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Current opinion in solid state & materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheeler, J.M.</au><au>Armstrong, D.E.J.</au><au>Heinz, W.</au><au>Schwaiger, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature nanoindentation: The state of the art and future challenges</atitle><jtitle>Current opinion in solid state & materials science</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>19</volume><issue>6</issue><spage>354</spage><epage>366</epage><pages>354-366</pages><issn>1359-0286</issn><abstract>•Detailed review of technical advances for high temperature nanoindentation.•Methods for avoiding and correcting thermal drift displacements are described.•Vacuum and in situ nanoindentation techniques at high temperature are discussed.•Several emerging high temperature nanoindentation techniques are illustrated.
Nanoindentation measurement capabilities at elevated temperatures have developed considerably over the last two decades. Commercially available systems can now perform stable indentation testing at temperatures up to ∼800°C with thermal drift levels similar to those present at room temperature. The thermal management and measurement techniques necessary to achieve this are discussed here, with particular emphasis on systems featuring independent heating of both the indenter and the sample. To enable measurements at temperatures where oxidation of the indenter and/or sample are a concern, vacuum nanoindentation techniques have also been developed. A natural extension of testing in vacuo is elevated temperature nanoindentation in situ in the scanning electron microscope, and the additional requirements for and benefits of this are discussed. Finally, several new emerging testing techniques are introduced: thermal cycling/fatigue, interfacial thermal resistance measurement and small scale transient plasticity measurements.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cossms.2015.02.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-0286 |
ispartof | Current opinion in solid state & materials science, 2015-12, Vol.19 (6), p.354-366 |
issn | 1359-0286 |
language | eng |
recordid | cdi_osti_scitechconnect_1434972 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Heating High temperature In situ Indenters Microcompression Nanoindentation Scanning electron microscopy Thermal cycling Thermal management Thermal resistance |
title | High temperature nanoindentation: The state of the art and future challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20nanoindentation:%20The%20state%20of%20the%20art%20and%20future%20challenges&rft.jtitle=Current%20opinion%20in%20solid%20state%20&%20materials%20science&rft.au=Wheeler,%20J.M.&rft.date=2015-12-01&rft.volume=19&rft.issue=6&rft.spage=354&rft.epage=366&rft.pages=354-366&rft.issn=1359-0286&rft_id=info:doi/10.1016/j.cossms.2015.02.002&rft_dat=%3Cproquest_osti_%3E1770299686%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-7946ca54715be3d4cca0f6e9a1b9f1cbd332778f34439f32549b2423b253fb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770299686&rft_id=info:pmid/&rfr_iscdi=true |